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ABSTRACT
The elderly over 65 accounts for 80% of COVID deaths in the

United States. In response to the pandemic, the federal, state

governments, and commercial insurers are promoting video

visits, through which the elderly can access specialists at

home over the Internet, without the risk of COVID exposure.

However, the current video visit practice barely relies on

video observation and talking. The specialist could not assess

the patient’s health conditions by performing auscultations.

This paper tries to address this key missing component in

video visits by proposing Asclepius, a hardware-software

solution that turns the patient’s earphones into a stethoscope,

allowing the specialist to hear the patient’s fine-grained heart

sound (i.e., PCG signals) in video visits. To achieve this goal,

we contribute a low-cost plug-in peripheral that repurposes

the earphone’s speaker into a microphone and uses it to cap-

ture the patient’s minute PCG signals from her ear canal. As

the PCG signals suffer from strong attenuation and multi-path

effects when propagating from the heart to ear canals, we then

propose efficient signal processing algorithms coupled with

a data-driven approach to de-reverberate and further correct

the amplitude and frequency distortion in raw PCG recep-

tions. We implement Asclepius on a 2-layer PCB board and

follow the IRB protocol to evaluate its performance with 30

volunteers. Our extensive experiments show that Asclepius
can effectively recover Phonocardiogram (PCG) signals with

different types of earphones. The objective blind testing and

subjective interview with five cardiologists further confirm

the clinical efficacy and efficiency of our system. PCG signal

samples, benchmark results, and cardiologist interviews can

be found at: https://asclepius-system.github.io/
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Figure 1: Asclepius empowers the specialist to hear the
patient’s heart sound during a video visit.
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1 INTRODUCTION
Imagine an old man approaching his eighty, suffering from

chronic diseases and living tens of miles away from the near-

est medical center. Video visit that allows him to access spe-

cialists timely from his own home could mean life or death

for him [19]. Due to the coronavirus, going to a clinic, a

hospital, or even taking a standard check-up may put the el-

derly in danger. We thus have witnessed a rapid growth of

video visit services in the past few years. Even in the age

of post-pandemic, health organizations are promoting video

visit to avoid unnecessary emergency department visits and

prolonged hospitalizations [30, 70].

While video visit has opened the door for the elderly to

maintain access to specialists at home, the current practice
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of video visit is far less effective compared to physical visit

because evaluating the patient’s health condition remotely is

challenging: specialists observe via video and communicate

symptoms by talking to the patient, they however cannot

perform auscultation – an indispensable physical examination

(PE) methodology – to make therapeutic decisions.

Cardiac auscultation is the most crucial physical examina-

tion among others [60]. It is performed to examine the circu-

latory system by listening to the heart sound (i.e., PCG signal)

emanating from the human heart. Although major pharma

providers have rolled out plenty of in-home digital stetho-

scope that allows patients to measure their PCG signals at

home and synchronize their data with specialists through Wi-

Fi or Bluetooth connection, these devices are usually pricey

(e.g., Thinklabs One digital stethoscope [78] costs $499 USD)

and difficult to operate for the elderly. More importantly, even

with access to these devices, patients lack professional train-

ing would not be able to place a stethoscope at the right place

for heart sound collection.

This paper explores the feasibility of designing a pervasive

remote auscultation solution for video visits. We envision

that the proposed solution should satisfy the following re-

quirements. High accuracy. The solution should be able to

detect both coarse-grained heart rate variation (HRV) and

fine-grained cardiac features (e.g., S1, S2 sound, and possi-

ble heart murmurs) that are essential to cardiac auscultation.

Easy to operate. The proposed system should also be easy

to operate, allowing specialists to take remote cardiac aus-

cultation with minimum patient intervention. Low-cost. The

proposed system should also be low-cost (e.g., less than $10

USD) so that it can scale to serve large populations rapidly

and unobtrusively.

We achieve the above goals by proposing Asclepius, a

hardware-software solution that turns the speaker transducer

on the patient’s earphone into a stethoscope and uses it to con-

tinuously monitor the acoustic cardiopulmonary signals from

the patient’s ear canal, with no explicit patient intervention.

Our solution works with everyday earphones (e.g., those ear-

phones cost a few US dollars) and requires neither dedicated

in-ear microphones nor IMU sensors (e.g., accelerometer)

that are only available on those pricey ANC earphones.

Developing Asclepius faces multiple challenges.

• First, unlike the dedicated stethoscope where the di-

aphragm is placed right above the heart with gentle force to

best capture the heart sound (i.e., PCG signals) [46], the PCG

signals captured by an earphone experience significant atten-

uation and frequency distortion when propagating through

the human bones, muscles, fat, and skins before arriving at

the human ear [47]. Accordingly, these PCG receptions tend

to be very weak and thus are likely to be buried by ambient

noises and human organ artifacts.
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Figure 2: Overview of Asclepius.
• Second, although using speaker as a microphone is feasi-

ble due to their structure reciprocity [22, 27, 63], capturing

PCG signals with an earphone’s speaker is still challenging

because the earphone speaker is optimized for signal emission,

not for signal absorption. Accordingly, when the weak PCG

signal arrives at the speaker’s diaphragm, only a small portion

of this signal will be transformed into a voltage signal. This

weak voltage signal is unlikely to maintain the fine-grained

PCG features such as S1 and S2 heart sound components.

• Third, an acoustic signal will get diffracted, reflected,

and absorbed when propagating from the audio cables to the

pairing device. The proportion of signal being absorbed by the

pairing device is affected by the mismatch between the two

impedances. The conventional offline impedance matching

can not be applied to our problem because both the earphone’s

impedance and the pairing device’s impedance are unknown.

They also change dramatically with hardware type, form fac-

tor, and material. To cope with these dynamics, it is essential

to conduct an online, automatic impedance matching.

To address the above challenges, Asclepius contributes

a novel hardware plugin module coupled with an efficient

software signal processing pipeline that works hand in hand

to capture, amplify, and further correct the distortion of raw

PCG receptions, as shown in Figure 2.

• Our hardware plugin turns the earphone’s speaker into

an agile microphone and uses this microphone to capture the

minute PCG signal at the ear canal. It then amplifies this PCG

signal and denoises the strong noises in the analog domain

with a low-power analog circuit. To ensure the PCG signals

can be delivered to the pairing device with minimum signal

reflections, we further design a programmable impedance cir-

cuit and propose a feedback-loop-based control algorithm to

balance the impedance between the earphone and the pairing

device automatically, without any human intervention.

• Upon receiving the PCG signals, our signal processing

pipeline running on the pairing device de-reverberates the raw

PCG reception, segments them into heart cycles, and then

corrects the frequency and phase distortion caused by the

multi-path effect when the PCG signal propagates inside the

human body. The output is sent to the specialist hereafter.

We implement Asclepius’s hardware on a 2-layer printed

circuit board (PCB). The total hardware cost is $5 USD. The

accompanying software processes, encompassing preprocess-

ing, segmentation, spectrogram recovery, and waveform re-

finement, are implemented on a local pairing device (a laptop)
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and managed on a cloud server. We evaluate Asclepius using

12 pairs of commodity earphones. The results based on 30

volunteers of different ages, genders, and BMIs show that As-
clepius achieves consistently high PCG signal recovery accu-

racy, with 1.17% average Root Mean Squared Error (RMSE)

compared to ground-truth PCG signals. We also play 20 types

of pathological PCG signals using a speaker attached to one

end of a pork belly. These signals propagate through the 40cm

pork belly and arrive at the earphones placed on the other end,

experiencing strong multi-path fading. The emulation results

show that Asclepius can effectively recover the multi-path

distorted pathological PCG signals.

To examine the clinical efficacy of Asclepius, we invite

five cardiologists to participate in a two-phase UX study. The

blind testing in the first phase shows the diagnosis accuracy

based on Asclepius’s data is consistent with that based on

the stethoscope’s output across all five cardiologists. The

subjective evaluation in the second phase shows that all five

cardiologists can identify the S1 and S2 heart sounds and

the pathological heart murmurs from Asclepius’s recordings.

They also believe Asclepius could serve as a valuable tool

for remote visits, providing a trusting relationship between

patients and clinicians.

Claims. Although the preliminary results are promising and

the feedback from cardiologists is also positive, we empha-

size that Asclepius can only be used as a prescreening device

to assist video visits; the current prototype cannot replace

the dedicated stethoscope for a physical examination before

undergoing a rigid, comprehensive clinic study. The reasons

are twofold. First, the current testing cases are still very lim-

ited, and we may still face domain gaps between different

subjects, which could affect the signal reconstruction perfor-

mance. Second, the emulation of in-body transmission based

on pork belly may not reflect the signal propagation inside

human bodies fairly. To close the gap, we have been consult-

ing clinicians during the development of Asclepius and are

currently working closely with the University of Pittsburgh

Medical Center (UPMC) to initiate clinic studies.

Contributions and roadmap. Overall Asclepius makes the

very first step toward remote auscultation, opening the door

to efficient video visits. Moreover, we believe this project

will spark novel ideas on heart sound sensing, pushing the

whole field moving forward. The rest of the paper is organized

as follows. We present the background and motivation (§2),

followed by the hardware (§3) and software design (§4). We

then describe the system evaluation in §5. Section 6 describes

the related work. Section 7 concludes.

2 BACKGROUND AND MOTIVATION
In this section, we first explain cardiac auscultation and its

significance in clinic pre-screening. We then discuss the chal-

lenges and opportunities for remote auscultation.

+

V

+

Figure 3: Impedance variation measurement. The change
of impedance will alter the voltage 𝐸𝑑 .

2.1 Cardiac Auscultation Primer
Cardiac auscultation [1] was recognized as a cornerstone for

physical examination and medication since the early 19th cen-

tury. Medical professionals such as well-trained physicians

or specialists could assess a patient’s cardiovascular activi-

ties and make objective therapeutic decisions by placing a

stethoscope [77] on the chest of the subject and examining

the internal sounds. A stethoscope is a sound system that

can capture fine-grained Phonocardiogram (PCG)1 signals,

including the first heart sound (S1), the second heart sound

(S2) as well as higher pitch sounds such as heart murmurs

generated from the closure and open of the heart valves and

vessels when blood goes through heart atrium and ventricle.

Cardiac auscultation based on a stethoscope is low-cost,

easy to operate, and user-friendly. As such, it has been adopted

worldwide and serves as a standard for the nursing prac-

tice [25]. Although many advanced technologies such as the
electrocardiogram (ECG) and echocardiography have been
invented for fine-grained cardiovascular activity monitoring,
cardiac auscultation with a stethoscope is still an irreplace-
able option in nursing practice. It not only helps to find a path
towards diagnosis but also serves as an opening to a trusting,
caring relationship between patients and specialists [20, 59].
2.2 Remote Auscultation: Opportunities
The demand for video visits remains strong after the pan-

demic [62]. However, cardiac auscultation is still a daunt-

ing task in video visits. Recently, the proliferation of mo-

bile devices may break this stalemate. For instance, prior

works [38, 50] have demonstrated the potential of using smart-

phones to capture heart sounds. However, like the predicament

faced by digital stethoscopes, without the necessary nursing

practice, it is challenging for a patient to put the smartphone

on the correct chest locations for heart sound capturing. Be-

sides, smartphones adopt omnidirectional microphones to

capture human speech, which makes them susceptible to mo-

tion artifacts and ambient noises during auscultation.

Earphones as a stethoscope. Compared to smartphones, ear-

phones hold many unique advantages in cardiac auscultation.

• Suffer from less ambient noises. When putting on the

earphone, the ear cup, ear canal, and eardrum will couple

together, forming a hermetic space [54]. The ear cup will

block ambient noises from entering the ear canal. Meanwhile,

1 PCG is a waveform of heart sounds.
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Figure 4: Schematic of the voltage detection circuit.
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Figure 5: Inductive voltage signal (a) with and (b) without
the proposed detection circuit.

the heart sound will be amplified in the ear canal due to the

occlusion effect [49].

• Low system cost. Every single pair of earphones has two

speaker transducers for music playback. Due to structure

reciprocity [75], these speaker transducers can be used as

microphones to capture acoustic signals inside the ear canal.

This leaves us with a cost-effective solution for auscultation.

• Easy to operate. The earphone-based solution allows the

specialist to take cardiac auscultation online without any pa-

tient intervention.

3 ASCLEPIUS’S HARDWARE DESIGN
The PCG signals propagate through the human body to arrive

at the ear canal. The earphone speaker’s diaphragm responds

to these signals, and a weak voltage signal is generated and

then offloaded to the pairing device (e.g., a desktop or a tablet

that the patient uses to talk to the specialist) through the

audio chain. Asclepius explores this opportunity to enable

remote cardiac auscultation. In this section, we first model

the relationship between the impedance variation and the

inductive voltage signal. We then propose a low-power circuit

to detect this voltage signal.

3.1 A Theoretical Model
When an earphone connects to a pairing device, a constant,

bias voltage signal 𝐸𝑠
2 will go through the earphone’s au-

dio jack, arriving at the earphone’s diaphragm. As shown in

Figure 3, let 𝑍𝑒 and 𝑍𝑝 be the impedance of the earphone

and the signal detection circuit (which will be introduced in

next section), respectively; Δ𝑍 is the earphone’s impedance

2 It is reasonable to request both the patient and the specialist to keep silent

during auscultation. Hence 𝐸𝑠 would not change over the course of PCG

signal detection.

Figure 6: CDF of the power of 𝐸𝑟𝑒𝑐𝑣 . We plug 12 different

pairs of earphones into seven different pairing devices and

measure the received signal strength at the pairing device in

the absence of impedance matching. -40dBm is the minimum

power requirement for PCG signal detection.

variation due to the PCG signal. 𝑍𝑝 , 𝑍𝑒 are serially connected

with each other, forming a voltage division circuit. Based on

Ohm’s law, we have:

𝐸𝑑 =
𝑍𝑒 + Δ𝑍

𝑍𝑒 + 𝑍𝑝 + Δ𝑍
· 𝐸𝑠 (1)

Since the impedance variation Δ𝑍 caused by heartbeats is

orders of magnitude smaller than 𝑍𝑒 + 𝑍𝑝 , the above equation

can be simplified as:

𝐸𝑑 =
𝑍𝑒 + Δ𝑍

𝑍𝑒 + 𝑍𝑝
· 𝐸𝑠 (2)

Since both 𝑍𝑒 and 𝑍𝑝 are constant values, the voltage signal

𝐸𝑑 varies in proportion to 𝑍𝑒 + Δ𝑍 . Accordingly, it is feasi-

ble to detect PCG signals by tracking the voltage signal 𝐸𝑑 .

However, since the PCG signal is very weak after propagating

along the human body, the variation of voltage signal 𝐸𝑑 due

to PCG signals would be very subtle.

3.2 Inductive Voltage Detection Circuit
We propose a low-power detection circuit to detect 𝐸𝑑 from

the patient’s left ear transducer since the human heart is rel-

atively closer to the left ear [17]. The right-ear channel is

reserved for sound playback.

Figure 4 shows the schematic of this circuit. It consists of a

low-noise operational amplifier and peripheral circuits (i.e., a

set of passive resistors and capacitors). The amplifier connects

to the left-ear speaker transducer through a 3.5mm audio jack.

We pick the amplifier with good frequency response on low

frequencies (e.g., < 1kHz) to avoid extra frequency distortion

on PCG signals. We then add two identical bypass capaci-

tors (1uF) before the amplifier to filter out high-frequency

noises above the frequency of PCG signals. The equivalent

series resistances [24] of these capacitors also improve the

common-mode rejection ratio of the amplifier, ensuring a high

amplification gain. Recall that the inductive voltage signal 𝐸𝑑
varies in proportion to 𝑍𝑒 + Δ𝑍 (Equation 2), not Δ𝑍 alone.

Hence we are expected to see a strong common-mode DC

input (due to 𝑍𝑒 ) to the amplifier. Keeping a high common-

mode rejection coefficient would restrain the DC interference.
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dBm dBm dBm

(a)

Figure 7: (a): received signal power in different impedance 𝑍𝑝 settings. (b): the signal profile in the initial, unmatched
state (𝐸𝑟𝑒𝑐𝑣 = -62dBm); (c): the signal profile in the optimal, unmatched state (𝐸𝑟𝑒𝑐𝑣 = -25dBm); (d): the signal profile in
the fully matched state (𝑍𝑝 + 𝑍𝑒 = 𝑍𝑠 , 𝐸𝑟𝑒𝑐𝑣 = -33dBm).

Figure 5 shows the 𝐸𝑑 (received by an oscilloscope) with

and without using this voltage detection circuit. Apparently,

𝐸𝑑 retains clear S1 and S2 heart sound components after going

through this detection circuit, as demonstrated in Figure 5(a).

In contrast, as we remove this circuit, we can hardly find the

heartbeat cycles on the raw voltage signal receptions, let alone

the fine-grained PCG features (Figure 5(b)).

3.3 Automatic Impedance Matching (AIM)
The amplified voltage signal 𝐸𝑑 flows to the pairing device

through the audio chain. Unfortunately, since the impedance

of the pairing device𝑍𝑠 (i.e., the sound card of a laptop) differs

from the equivalent impedance of the earphone (i.e., 𝑍𝑒+𝑍𝑝

in Figure 3), only a small portion of 𝐸𝑑 will be absorbed by

the pairing device [65], which results in a very weak PCG

reception 𝐸𝑟𝑒𝑐𝑣 at the pairing device. Our benchmark study

shown in Figure 6 further confirms that in most cases the

pairing device can hardly receive the PCG signal when we

plug the detection circuit directly into the pairing device.3

Programmable impedance matching circuit. The impeda-

nce matching in Asclepius is challenging because both the

impedance of earphones 𝑍𝑒 and the pairing device 𝑍𝑠 are un-

known in advance. Even worse, their impedance also changes

drastically with the hardware type, form factor, and material.

To address this issue, we build a programmable impedance

circuit using a digital potentiometer chip MAX5402EUA [52].

Its impedance (denoted as 𝑍𝑝 ) can be programmed with an

SPI control signal, which allows us to adapt the earphone’s

effective impedance (𝑍𝑒+𝑍𝑝 ) to different pairing devices 𝑍𝑠 .

The pitfall in impedance matching. Conventionally, the

impedance matching aims to match 𝑍𝑒 +𝑍𝑝 to 𝑍𝑠 so that most

inductive voltage signal 𝐸𝑑 can be delivered to the pairing

device (i.e., 𝐸𝑟𝑒𝑐𝑣 ≈ 𝐸𝑑 ) [65]. However, in Asclepius, as we

increase 𝑍𝑝 to match 𝑍𝑒 + 𝑍𝑝 to 𝑍𝑠 , the voltage signal 𝐸𝑑 will

decline (Equation 2), indicating that the sensible PCG signals

(represented by 𝐸𝑑 ) become even weaker before arriving at the

pairing device. This is particularly detrimental to the higher

frequency components (e.g., 100 – 400 Hz) of PCG signals

because these parts are already very weak due to the fact that

the higher frequency signals suffer more attenuation when

3 The impedance of the earphone’s speaker is tuned for sound playback, not for

sound reception; its impedance mismatches with that of the pairing device.

Algorithm 1: Online impedance matching

input :𝑍𝑝 ← 𝑖_𝑍𝑝 ; {𝑖_𝐸𝑟𝑒𝑐𝑣} ← {};

output :Optimal matching status;

1 Function ActiveMatching():
2 for 𝑖_𝑍𝑝 ← 0 to 𝑀𝐴𝑋 do
3 𝑐𝑢𝑟𝑟_𝐸𝑟𝑒𝑐𝑣 ← CompEnergy(𝑖_𝑍𝑝);
4 {𝑖_𝐸𝑟𝑒𝑐𝑣} ←curr_E𝑟𝑒𝑐𝑣;

5 end
6 𝑜𝑝𝑡_𝑍𝑝 ←maxitem({i_E𝑟𝑒𝑐𝑣});

7 return 𝑜𝑝𝑡_𝑍𝑝 ;

8 Function CompEnergy(𝑖):
9 capture audio symbol 𝑆𝑖 ;

10 𝑆∗𝑖 ←BPF(S𝑖 );

11 𝑆∗∗𝑖 ←LPF(S∗
𝑖 · 𝑓𝑡𝑜𝑛𝑒 );

12 𝑆+𝑖 ←Conv(S∗∗
𝑖 , 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒);

13 𝑖_𝐸𝑟𝑒𝑐𝑣 ←PSD(S+
𝑖 );

14 return 𝑖_𝐸𝑟𝑒𝑐𝑣;

propagating through the human body [39]. Hence adopting the

conventional impedance matching principle (i.e.,𝑍𝑝+𝑍𝑒 = 𝑍𝑠 )

may not necessarily lead to a better PCG reception.

To validate this argument, we measure the power of the

received PCG signal 𝐸𝑟𝑒𝑐𝑣 at different impedance settings.

As shown in Figure 7(a), 𝐸𝑟𝑒𝑐𝑣 grows first and then declines

as we increase the impedance 𝑍𝑝 . As expected, 𝐸𝑟𝑒𝑐𝑣 at the

fully matched state 𝑠3 is 8dB lower than the signal received

at the optimal, unmatched state 𝑠2. Moreover, as shown in

Figure 7(d), the high-frequency components of PCG signals

are overwhelmed by the noise at the fully matched state 𝑠3.
An online impedance tuning algorithm. To address this

pitfall, we propose a feedback-loop-based impedance tuning

algorithm to find the optimal matching state. The basic idea is

to tune the impedance until we find a matching state that leads

to the strongest received signal 𝐸𝑟𝑒𝑐𝑣 (i.e., with the highest

SNR), as formulated below:

argmax
𝑍𝑝

𝑆𝑁𝑅(𝐸𝑟𝑒𝑐𝑣) (3)
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Figure 8: Schematic (left) and PCB (right) of Asclepius.
Expediting the searching. Taking each heartbeat symbol as

the reference 𝐸𝑟𝑒𝑐𝑣 to tune the impedance 𝑍𝑝 would take an

excessively long delay since the heart rate is barely around

1–2Hz [57]. To expedite the impedance matching, we send

an active probing signal with a very short symbol time (i.e.,
10𝑚𝑠) from the user’s earphone speaker on the right-hand

side. This probing signal will propagate through the user’s

head, captured by the left-ear transducer and our detection

circuit inherently. By taking this active probing signal as

the reference signal, we can iterate through the searching

space within 3 seconds and locate the optimal impedance

setting. Specifically, the probing signal consists of consecutive

chirps on the ultra-sound (17KHz – 22KHz) band to prevent

it from 𝑖) interfering with the heart sound or motion noises,

and 𝑖𝑖) distracting users. The better noise-resilience of chirp

signals allows us to send the probing signals at a lower power

(40dBA) and thus makes no harm to human safety [68].

Algorithm 1 describes the impedance tuning process. The

ActiveMatching() function is called to determine the optimal

𝑍𝑝 value. It iterates through each impedance candidate 𝑖_𝑍𝑝

within the range of 0-10kΩ 4 and measures the power of the

received signal 𝑐𝑢𝑟𝑟_𝐸𝑟𝑒𝑐𝑣 in each impedance setting using

the function CompEnergy(). The CompEnergy() function con-

tains four steps: i) remove the noise of the received signal 𝑆𝑖
using a bandpass filter (BPF) with a cutoff frequency at 17k

and 22kHz; ii) down-convert 𝑆𝑖 to the baseband (i.e., 0–5kHz)

and pass it through a lowpass filter (LPF); iii) remove the

possible interference (e.g., modulated physiological signal on

the chirp symbol or hardware jitter noise) with a convolution

function; and iv) compute the power spectral density (PSD). It

is worth noting that down-converting 𝑆𝑖 to the baseband will

result in better signal quality as LPF retains fewer residual

noises at the 3dB cutoff frequency [51] compared to a BPF.

One may ask would the optimal impedance derived from

the ultrasound band be still optimal for the audible band where

the heartbeat stays? Figure 7(a) the impedance curve on both

the ultrasound band and a 0–5kHz audible band. Notably,

the pattern of the in-band impedance curve closely mirrors

that derived from the 17–22kHz ultrasound probing signal.

This similarity can be attributed to the inherent nature of

4 The impedance of a pairing device’s sound card is usually less than 10kΩ [74]

and the impedance of earphones is in the range of 8–600Ω [23].

acoustic signals, which makes the impedance less responsive

to variations in frequency [86].

3.4 Putting Them Together
Figure 8 shows the circuit integration. The schematic contains

a low noise amplifier (INA126) for signal detection, a poten-

tiometer chip MAX5402 for automatic impedance matching,

and an LMC7660 switched capacitor voltage converter for

voltage transformation. The user can turn on/off Asclepius
with the onboard switch button. We power this PCB board

and send the control signal through a micro-USB interface.

The hardware cost is around 5 US dollars.

4 ASCLEPIUS’S SOFTWARE
The hardware module adapts the earphone’s impedance to the

pairing device so that the pairing device can capture the heart

sound signals at the cost of a minimum power loss. However,

the quality of PCG receptions is low because the PCG signals

experience strong attenuation and multi-path effects when

propagating inside the human body. Hence the energy and

frequency components of PCG receptions will be distorted.

Inspired by the success of deep neural networks (DNN) in

signal reconstruction [42, 55, 88], we introduce a data-driven

framework to mitigate the frequency and energy distortion in

PCG receptions. We envision this framework can be easily

integrated into online video visiting platforms as a software

patch, serving patients unobtrusively. The overall framework

consists of three parts: pre-processing, segmentation, and a

two-stage signal recovery. Below we elaborate on each part.

4.1 Signal pre-processing
Let 𝑥 (𝑡) be the PCG signal receptions. The sampling rate of

the sound card on the pairing device is set to 48kHz. 𝑥 (𝑡)
undergoes the following three steps.

• Filtering. We first filter 𝑥 (𝑡) with a second-order Butter-

worth low-pass filter (LPF) with a cutoff frequency at 500Hz

to eliminate the out-band noises, e.g., ambient acoustic noises.

The cutoff frequency is set based on the fact that the heart

sound components such as S1 and S2, as well as murmurs,

are in the range of 0 to 500Hz [45, 53, 56].

• Spike removal. After filtering, there are still in-band en-

ergy spikes that interfere with PCG signals. These energy

spikes are due to the friction between earphones and human
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Figure 9: Signal preprocessing and segmentation. (a): The pre-processing removes the in-band interference (e.g., motion

artifacts). (b): The segmentation consists of 1© signal de-reverberation, 2© envelope detector, and 3© cardiac cycle refinement. It

detects the precise heartbeat boundary and sends each heartbeat segment to the signal correction and recovery module. (c): The

comparison of segmented results with the groundtruth. The heartbeat signals are collected from a healthy 26 years old female.

ears [2, 40]. We then apply a spike removal function to elim-

inate these energy spikes. Specifically, we divide 𝑥 (𝑡) into

consecutive 500ms time windows with 250ms hop length

and compute the maximum absolute amplitudes (MAAs) over

each window. If the MAA of a window exceeds the predefined

energy threshold (three times the median value of all MAAs),

we take it as an outlier spike and remove it from 𝑥 (𝑡).
• Normalization. Finally, we normalize 𝑥 (𝑡) by scaling it to

the range of [-1, 1] and feed the normalized signal into the

segmentation step. Such normalization would not affect the

fine-grained cardiac characteristics hidden in the collected

PCG signals because both the relative amplitude among dif-

ferent heart sound components and their frequencies are well

preserved after normalization. Figure 9(a) shows the result.

4.2 Segmentation
We segment the pre-processed PCG signal 𝑥 (𝑡) into cardiac

cycles [9] for frequency and energy distortion correction. A

cardiac cycle describes the sequence of electrical and mechan-

ical events that occur with every heartbeat. It consists of a

heart relaxation (diastole) and a heart contraction (systole)

[48]. The duration of a cardiac cycle varies but normally lasts

0.6s – 1s [9]. To ensure the performance of PCG recovery,

we have to detect the precise boundary of each cardiac cycle.

Below we elaborate on our proposed segmentation method.

• Signal de-reverberation. Compared to the clinical PCG

signal captured at the human chest, PCG signals captured by

earphones propagate over longer distances inside the human

body (i.e., from the heart to the ear canal) and thus suffer more

from the multi-path effect [14, 39]. These paths have different

lengths before reaching the receiver, thus creating different

versions that reach at different time intervals. Accordingly, we

are expected to see severe reverberations (i.e., inter-symbol

interference) on 𝑥 (𝑡), which makes the boundary of each

heartbeat cycle less distinguishable, as shown in Figure 9(b).

Motivated by the success of Wiener filter in ultrasonic

imaging de-reverberation [7, 41] and speech enhancement [21,

44, 91], we apply Wiener filter to produce an uncorrupted

PCG signal by suppressing the reverberations during diastole

intervals [34]. Step 1 in Figure 9 (b) shows the heartbeat

signal after applying the Wiener filter. The boundary of each

heartbeat cycle after filtering is easily distinguishable.

• Cardiac cycle segmentation. Next, we detect the bound-

ary of each cardiac cycle on the de-reverberated PCG signal.

A straightforward solution would be applying an amplitude

threshold to distinguish noise and cardiac signal. However,

such a design is susceptible to noise variations and thus is

less accurate. In Asclepius, we borrow the hidden Markov

model (HMM) based segmentation from biomedical com-

munity [33, 76] and propose a fast boundary detection and

then refinement two-phase segmentation method to detect the

precise boundary of PCG signals, as explained below.

⊲ Phase One: Fast boundary detection. We first apply

a homomorphic envelope detector [69], followed by a zero-

phase low-pass filter [32] to the input (i.e., the de-reverberated

PCG signal). The envelope detector keeps the profile of car-

diac signals and removes the high-frequency outliers, making

S1 and S2 heart sound peaks more prominent (the red curve

in Figure 9(b)). Next, we leverage S1 and S2 peaks to detect

the coarse-grained boundary of each cardiac cycle using auto-

correlation. The span of the cardiac cycle is estimated as the

time from lag zero to the highest correlation coefficient.

⊲ Phase Two: Refinement. The auto-correlation can only

detect the averaged length of multiple cardiac cycles. In prac-

tice, the length of a cardiac cycle may change over time due

to heart rate variability (HRV) [64]. To address this issue, we

propose a refinement phase where we search for the precise

boundary of each cardiac cycle in the vicinity of the coarse-

grained timestamp obtained in the previous step. Specifically,

we feed the truncated cardiac cycles into a hidden Marko-

based segmentation model (HMM) [76]. The HMM model

estimates the probability of the expected precise boundary

with logistic regression under the supervision of PCG fea-

ture (e.g., S1 and S2 peaks) distributions. In Asclepius, we

adopted a public PCG feature distribution. This feature distri-

bution was trained on a large cardiac database [33] and has

been proven to be effective in handling both healthy individu-

als and pathological patients who have bradycardia [4] and

tachycardia [83]. The comparison with the ground-truth in

Figure 9(c) confirms the efficacy of this design.
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Figure 10: Two-stage signal recovery model in Asclepius.

4.3 PCG signal correction and recovery
The frequency and the phase components of PCG signals are

both crucial to auscultations. Motivated by UltraSE [80] in

speech enhancement, we propose a two-stage deep learning

model (Figure 10) to recover the PCG spectrogram and further

refine the PCG waveform in the time domain. The whole

process only takes 0.015s to reconstruct a 1.5s heart sound.

• Stage One: spectrogram recovery. We adopt a classic

encoder-decoder model architecture UNet [67], for PCG spec-

trogram recovery. UNet has proved its efficacy in human

vital sign recovery [16, 36] and signal reconstruction (e.g.,
magnetic resonance (MR) ) [90]. As shown in Figure 10, the

model contains six encoder layers and six decoder layers with

skip connections. Each encoder layer consists of a 2D con-

volution, a batch normalization (BN), a ReLU function, and

a dropout regularization module. The stride is set to 2. Each

decoder layer comprises a 2D transposed convolution, a BN,

a ReLU, and a dropout. Notice that S1 and S2 heart sound

components normally last 0.1 second [87]; we thus set the

kernel size of the first two convolution layer to 8×8, ensuring

its reception field is appropriate to capture a complete S1 and

S2 component. Moreover, we replace the standard BN with

instance normalization (IN) [84] to expedite training conver-

gence. The frame length of each spectrogram input is set to

2048, with a hope length of 1024. We adopt L1 loss (termed

as 𝐿𝑠𝑝𝑒𝑐 ) to measure the difference between the reconstructed

PCG spectrogram and the ground-truth spectrogram.

• Stage Two: waveform refinement. After the first stage,

we will get a PCG spectrogram with reconstructed frequency

components. However, the phase values of the reconstructed

PCG signals tend to be discontinuous, which will cause incon-

sistent group delay [15, 35] across frequencies, bringing audi-

ble noises to PCG signals. To address this issue, we transform

the reconstructed spectrogram to a time-domain waveform

using a differentiable iSTFT layer [43] and then propose a

second-stage model for waveform refinement.

⊲ Model structure. We adopt a 1D UNet encoder-decoder

model [58] for PCG waveform refinement. Similar to the first-

stage model, this 1D UNet also contains six encoder layers

and six decoder layers with skip connections. Each encoder

layer comprises a 1D convolution, a BN, a PReLU, and a

dropout. The PReLU activation function allows the model

to accept negative data sample input. The default stride is

Steth.Asclepius

Figure 11: Earphones and pairing devices used in Ascle-
pius (left); experiment setup on a human subject (right).

2. The decoder layer replaces the convolution with the 1D

transposed convolution. Note that the audio wave is quasi-

stationary within a very short time (2-50 ms) [15], we thus set

the kernel size to 128, which ensures a 2 ms reception field

on the waveform at 48kHz sampling rate.

⊲ Loss function. Similar to the stage-one model, we adopt

L1 loss to measure the difference between the reconstructed

waveform and the ground-truth PCG waveform (termed as

𝐿𝑡𝑖𝑚𝑒 ). However, during signal reconstruction, the change of

signal samples will alter both the phase and frequency of PCG

signals, which may destroy the reconstructed spectrogram.

To address this issue, we introduce another L1 loss function

𝐿𝑠𝑝𝑒𝑐′ to measure the difference between the reconstructed

spectrum after the second stage and the first stage. This loss

function will enforce the waveform refinement model to pay

attention to phase refinement during waveform reconstruction.

• Combine two stages together. These two models are con-

nected in series, and the loss function 𝐿 is the weighted com-

bination of these three loss functions 𝐿 = 𝛼 ∗ 𝐿𝑠𝑝𝑒𝑐 + 𝐿𝑡𝑖𝑚𝑒 +

𝛽 ∗ 𝐿𝑠𝑝𝑒𝑐′ . The 𝛼 is manually set to 10 times bigger than 𝛽
to prioritize the spectrogram recovery performance during

the training. During the model training, we find the final out-

put PCG waveform contains some high-frequency artifacts

above the PCG frequency band occasionally. We thus apply

the same second-order low pass filter (§4.1) with 500 Hz

cutoff frequencies to the waveform output to eliminate the

out-band audio artifacts. The final PCG waveforms are sent

to the specialist through the video visit platform.

5 EVALUATION
We implement Asclepius’s hardware prototype on a 2-layer

printed circuit board (PCB). It works as a plug-in peripheral

connecting the earphone and the pairing device using 3.5mm
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audio jacks, as shown in Figure 8. The signal processing

pipeline (except for the data-driven PCG signal reconstruc-

tion) is implemented in MATLAB. Due to the page limitation,
we put micro-benchmark results and PCG audio samples to
an external link: https://asclepius-system.github.io/

5.1 Experiments Setup
Data collection. We collect PCG signals from 30 volunteers

(21 males, 9 females) with different ages (22–67 years old),

weights, and heights (BMI ranges from 15.9 to 31.8) using

different earphones. The ground truth is obtained by an FDA-

approved Thinklabs One Digital Stethoscope [78]. The stetho-

scope is placed at the Apex area [72] under the supervision of

a medical professional. We set the stethoscope to the Bell fil-

ter mode [82] to maximize its frequency response for cardiac

signal detection while minimizing other physiological sound

interference, such as lung sound. The volunteer is asked to

keep quiet during the data collection processs to avoid unnec-

essary motion artifacts, as shown in Figure 11. Each volunteer

is asked to fill out a questionnaire for the UX study (§5.5).

Overall, 6.7 GB PCG signals are collected.

Earphone configurations. The PCG signals are collected by

twelve pairs of earphones with different wearing types (over-

ear, on-ear, and in-ear), impedance, prices, and transducer

sizes. Detailed information about these earphones can be

found on our supplementary website. Besides, three different

laptops and four different external sound cards are used to

capture the PCG signals for further processing.

Dataset preparation. We apply the pre-processing algorithm

to the raw PCG receptions, segmenting them into heart cycles

and zero-padding each heart cycle into 1.5s. Motivated by

[36, 71], we adopt leave-one-out cross-validation to evaluate

system performance: each time, we train the model on 29

volunteers and test it on another unseen volunteer.

Model training. We implement the two-stage signal recov-

ery model on PyTorch 1.6 and train it on a NVIDIA A100

GPU for 200 epochs, with a batch size of 32. We adopt Adam

optimizer with a learning rate of 1e-4. We follow a weight-

decaying policy at a decaying rate of 90% for every 50 epochs.

The hyper-parameter 𝛼 and 𝛽 are set to 10.0 and 1.0, respec-

tively. We also adopt early stopping to avoid over-fitting.

Evaluation metric. Root Mean Squared Error (RMSE) is

a widely adopted statistical metric for assessing the quality

of PCG de-noising [31, 79] and ECG digitisation [89]. Moti-

vated by them, we adopt the RMSE to quantify the recovered

PCG quality in Asclepius. RMSE measures the sample-level

difference between the reconstructed PCG and the ground

truth using the equation: 𝑅𝑀𝑆𝐸 =
√

1
𝑁

∑𝑁
𝑛=1 (𝑥 (𝑛) − 𝑥 (𝑛))2,

where 𝑥 (𝑛) refers to the reconstructed PCG signal; 𝑥 (𝑛) refers

to the ground-truth PCG samples captured by the stethoscope.

Smaller RMSE indicates a higher similarity between the two.

5.2 Overall Performance
Figure 12 shows the PCG signal quality of 20 subjects’ results

randomly chosen from 30 volunteers. Overall, Asclepius
achieves decent performance across all 20 participants, with a

mean RMSE at 1.34%. For reference, we show the PCG wave-

form with different RMSE values in the same figure. Taking

further scrutiny of these results, we find that subjects 3, 7, 13,

and 19 have relatively higher RMSE variances (e.g., >3%)

than the remaining subjects. We checked their PCG samples

recorded by Asclepius and the stethoscope and find that the

PCG signals are partially polluted by noises. This is proba-

bly due to unintentional body motions during data collection.

We envision a larger training set may help to eliminate the

reconstruction bias caused by these motion artifacts. Audio

samples can be found at https://asclepius-system.github.io/

• Impact of age and gender. Next, we examine the impact

of gender and age on PCG signal quality. Restricted by the

number of participants, we divide our 30 participants into

five groups: F-1 (female, <26 years old), F-2 (female 26–45

years old), M-1 (male, <26 years old), M-2 (male, 26–45

years old), and M-3 (male, >45 years old), respectively. As

shown in Figure 13, all five groups achieve consistent PCG

signal quality (average RMSE = 1.17%), which indicates

that Asclepius is resilient to genders and ages. On the other

hand, compared to the group M-2 and M-3, groups F-1, F-2,
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Figure 16: Comparison study.
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Figure 17: Experiment setup. Figure 18: Emulation results.

and M-1 achieve a relatively higher RMSE variance. While

we are unsure of the reasons behind this phenomenon, one

reason could be that compared to groups F-1, F-2, and M-1,

we lack sufficient training samples in groups M-2 and M-3

due to fewer participants. We plan to investigate this issue by

recruiting more participants in these two groups.

• Impact of BMI. We then examine the impact of different

Body Mass Index (BMI) on PCG quality. BMI is a golden-

standard measurement of body fat based on the subject’s

height and weight. We divide 30 participants into four groups,

namely, underweight (BMI <18.5), healthy (BMI within 18.5–

24.9), overweight (BMI within 25.0–29.9), and obese (BMI

>30.0). Figure 14 shows the results. All four groups achieve

consistent PCG signal quality (with an average RMSE of

1.09%, 1.19%, 1.13%, 1.24%, respectively), indicating As-
clepius is resilient to different BMIs.

• Impact of earphones. Next, we evaluate the impact of

earphones on the PCG signal quality. In this experiment, we

randomly pick one participant from 30 participants and extract

the PCG signals collected by six pairs of earphones (out of 12).

We then reconstruct these PCG signals with Asclepius and

show their signal quality in Figure 15. Overall, we observe

that the on-ear earphones achieve the best PCG signal quality

(average RMSE = 0.49%), followed by the over-ear earphones

(average RMSE =1.22%), and then in-ear earphones (average

RMSE = 2.80%). One reason for the superior performance of

on-ear earphones is that on-ear earphones have both a large

speaker transducer and a short distance to the ear canal. In

contrast, although in-ear earphones have even closer contact

with the ear canal, their inductive voltage signals due to the

heartbeats are relatively weaker due to the smaller size of their

speaker transducer. We did not see significant differences in

RMSE values of four pairs of over-ear earphones even though

their prices vary drastically from 40 to 300 USD.

5.3 Comparison study
We further compare Asclepius with HeadFi [27], a state-of-

the-art hardware design that reuses speakers on commodity

earphones as a microphone to sense physiological activities.

To make a fair comparison, we collect PCG signals from

seven human subjects using both HeadFi and Asclepius hard-

ware and adopt the same software processing pipeline (§4)

introduced in this paper for PCG signal processing and recov-

ery. Worth noting, over 75% pairing devices cannot capture

PCG signals with the HeadFi circuit, due to the absence of the

Table 1: Pathological heart sounds in each group.

Group Explanations
REF Normal S1, S2 from a healthy individual.

G1 Split S1 or S2, absent S2, systolic click, etc.
G2 Holosystolic murmur, early systolic or diastolic murmur, etc.
G3 S3 gallop, S4 gallop.

G4 Systolic murmur with splitting S2, S3 and holosystolic murmur, etc.

impedance matching design (§3.3). To make HeadFi work,

we manually adjusted the circuit impedance of HeadFi, ensur-

ing the successful capture of PCG signals. For our analysis,

heart sounds data from four subjects are used as training data,

while the data from the remaining three subjects are reserved

for evaluation. Both HeadFi and Asclepius data were individ-

ually trained, maintaining consistency in signal processing,

signal recovery, and hyper-parameter initialization.

Result. Figure 16 shows the result. We observe that the av-

erage RMSE of the raw PCG signal received by Asclepius’s

hardware is 3.6%, and the average RMSE of the raw PCG

signal received by HeadFi hardware is 6.4% (nearly 2X worse

than Asclepius), indicating the effectiveness of Asclepius
hardware design. Next, the average RMSE drops to 1.5% as

we apply the first-stage signal reconstruction (spectrogram

recovery) to Asclepius. In contrast, the average RMSE drops

to 4.8% for HeadFi recordings. Furthermore, the average

RMSE declines to 0.9% once the second-stage signal recon-

struction (waveform refinement) is applied for Asclepius’s

recording, while the average RMSE maintains 4.3% when

the second-stage model is applied for the HeadFi recording.

This group of experiments manifests the efficacy of each de-

sign component of Asclepius. In the meanwhile, the average

RMSE of HeadFi’s recording after two-stage improvement

(4.3%) is still worse than the raw PCG perception of Ascle-
pius hardware (3.6%). Detailed comparative analysis and

audio samples of Asclepius and HeadFi can be found at

https://asclepius-system.github.io/

5.4 Emulating Patient’s Heart Recording
Conducting clinic studies with patients has to undergo a more

rigid IRB approval that usually takes more than a year. To

examine the efficacy of Asclepius on a patient’s heart sound

detection, we emulate clinical studies by playing pathological

heart sound recordings with a speaker that was placed inside a

pork belly. The vibration signals propagate through this pork

belly, arriving at the earphones, as shown in Figure 17. These
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Figure 19: Example pathological signals recovered by
HeadFi, Asclepius, and ground-truth (Steth.).

vibration signals undergo multipath fading (e.g., human body)

as they travel to the earphone.

Dataset. The pathological heart sound recordings are from a

public heart sound dataset [85] that was originally used for

professional skill training by Umich Medicine. It contains 20

different types of pathological heart sound recordings, each

lasting one minute. To emulate different path lengths, we

place the speaker in different parts of the pork belly. More-

over, we play the heart sound recordings in different speaker

volume settings and the hydration status of the pork belly

to emulate human subject variability. In total, We collect 14

hours of PCG signals across 24 different environmental con-

ditions (4 of volume settings × 3 of path length settings × 2

of hydration status). For comparison purposes, an additional

14 hours of PCG signals are collected using HeadFi. Of these,

data from 20 conditions were used for training, while the

remaining 4 sets were reserved for evaluation.

Results. We categorize 20 pathological heart sounds into

four groups based on their pathological signal characteris-

tics, namely, G1, G2, G3, and G4. The explanation of each

group can be found in Table 1. Additionally, We include a

REF group collected from a healthy individual as a reference.

The emulation results for both HeadFi and Asclepius are de-

picted in Figure 18. For Asclepius, we observe the REF group

achieves 2.2% RMSE error on average, slightly worse than the

results from human subjects-based experiments (§5.2). Upon

examining the PCG waveforms, we find that this elevated

RMSE stems mainly from the time offset between the cap-

tured PCG signal and the ground truth – different from human

subject-based experiments where the ground truth and testing

data are collected simultaneously and naturally synchronized,

the PCG signals in the emulation are collected independently.

As a result, we have to align them to the ground truth audio

clips manually, which introduces inconsistency. On the other

hand, HeadFi’s REF group achieves an average RMSE er-

ror of 5.8%, which is substantially higher than Asclepius’s

performance. Furthermore, the RMSE variance for HeadFi

is notably higher. This is due to the fact that HeadFi will

naturally cancel the PCG signal received by the left-ear trans-

ducer and right-ear transducer, resulting in a low-SNR PCG

reception. Theoretical analysis can be found on our website.

(a) (b)

Figure 20: (a) The percentage of correctly recognized
heart sounds over 4 different categories; (b) Accuracy
variations among 5 different cardiologists.

Taking scrutiny of pathological PCG groups, we observe

Asclepius achieves similar signal quality on G1 and the REF

groups (with 2.3% RMSE on average), demonstrating that

Asclepius is capable to detect heart diseases specified in this

group. Asclepius achieves an average RMSE of 2.8% for

group G2, which is slightly worse than G1 and REF. This is

reasonable because murmurs in group G2 are high-frequency

components that suffer more from attenuation and multi-path

effects. We also find large RMSE variations between diastolic

and systolic murmurs in this group. Asclepius achieves the

worst performance on group G3 (i.e., average RMSE = 4.1%),

indicating the detection and reconstruction of S3 and S4 gal-

lop (lower signal amplitude compared to S1 and S2 peaks) is

challenging for Asclepius. As for other pathological sound

combinations specified in group G4, Asclepius achieves an

average RMSE of 2.7%, a comparable performance with REF

and G1 group. On the contrary, HeadFi consistently regis-

ters high RMSE values (i.e., averaging over 5%) across all

pathological groups.

To gain an in-depth understanding of the PCG signal quality

provided by both systems, we plot in Figure 19 two represen-

tative pathological examples from G2 and G4, each recorded

by both HeadFi and Asclepius. The comparison reveals that

Asclepius (second row) effectively captures and preserves

critical cardiac features, including S1 and S2, high-frequency

murmurs, and even the S4 sounds, with its software-hardware

co-design. Conversely, HeadFi (first row) predominantly em-

phasizes the S1 and S2 heart sounds after the signal recovery,

while other vital pathological heart features are largely absent.

5.5 UX Studies
To further validate the user acceptance and clinical efficacy

of Asclepius, we also run UX studies to get feedback from

both 30 experiment participants and five cardiologists. Due to

the page limit, we put the user feedback part on our external

link and only present the two-stage cardiologists’ study here:

• Stage I: Blind testing (objective evaluation). In stage I, we

devised a blind testing study wherein cardiologists were asked

to listen to 50 distinct heart sound clips and diagnose based on

each one. Among them, 25 audios are randomly selected from

Asclepius’s recording, and the other 25 audios with the same

cardiac features are from the stethoscope recording. Each
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group of audio clips encompasses four different categories

of cardiac features, including healthy, pathological S1/S2,

heart murmurs, and pathological S3/S4. The audio clips are

shuffled before playing and the cardiologists are not aware of

the audio sources until the end of the blind testing session.

Result. Figure 20 (a) shows the percentage of correctly rec-

ognized heart sounds in each heart sound category. The result

is averaged over five cardiologists’ diagnosis results. Overall,

we observe that the diagnosis performance based on Ascle-

pius’s recordings is quite similar to the performance based

on the stethoscope’s recordings across all four categories of

heart sounds. The diagnosis of murmurs achieves the highest

correctness rate (CR) on both Asclepius and stethoscope,

followed by the diagnosis of pathological S1/S2 (Asclepius:

72% / stethoscope: 74%). This is because the murmurs are

in the high-frequency band and thus are relatively easier to

observe compared to S1 and S2 sounds.

Further scrutiny shows that Asclepius achieves a slightly

higher diagnosis correctness rate than the stethoscope (92%

versus 84%) in detecting the murmurs. One possible reason

could be that the stethoscope records may contain more noise

interference. In contrast, earphones are less likely to pick up

ambient noise when they are put inside the ear canal. The

diagnosis correctness rate then drops to 62% (Asclepius)

and 60% (stethoscope) for healthy heart sounds. It further

declined to a very low level (i.e., 10% for both Asclepius
and stethoscope) for pathological S3/S4. The interview with

cardiologists revealed that distinguishing S3/S4 sounds is

challenging in cardiac auscultation. So cardiologists are less

likely to rely on auscultations for diagnosing S3/S4 sounds.

They instead focus on S1/S2 and murmurs in auscultation.

Figure 20(b) further shows the diagnosis correctness rate

across these five cardiologists. All cardiologists achieve quite

similar performance in diagnosing heart sounds from As-

clepius’s readings and stethoscope’s readings. Among five

cardiologists, 𝐶 performs slightly worse than the others (i.e.,
CR <30%). One possible reason could be cardiologist C may

not yet have extensive clinical experience and his proficiency

in auscultation may be limited.

• Stage II: Cardiologist interview (subjective evaluation).
We further designed a UX study under the guidance of a UX

researcher and interviewed five cardiologists individually to

get their opinions on Asclepius. The interview process was

divided into five phases (P1-P5) and hosted online through

Zoom. Table 2 shows the dialogue sample from one of the

cardiologists. Detailed procedures of interviews and complete

dialogues with cardiologists can be found on our website.

Summary of the interview. We initiated the interview by

briefing the cardiologists about Asclepius. In P1, we asked

them what are the most important cardiac features for auscul-

tation. All five cardiologists highlighted the S1 and S2 heart

Table 2: A sample of the dialog with an anonymous cardi-
ologist. Editing and translation are made for clarity.
⊲ P1: Introducing Asclepius to the clinician:

Q1: In your clinical experience, what do you consider to be the most crucial aspects of
heart sounds when making a diagnosis?
Answer: When evaluating heart conditions, it’s crucial to carefully assess the primary
S1 and S2 heart sounds, as well as any murmurs. While you might also hear S3 and
S4 sounds during auscultation, distinguishing between normal and abnormal variants
can be challenging. Therefore, the primary focus should always be on the clarity and
consistency of the S1 and S2 heart sounds and any identified murmurs.

⊲ P2: Playing PCG signals that Asclepius captured from a healthy individual,
and informing the cardiologist that the audio clips are a product of our technology:
Q2: Based on the heart sounds you’ve just heard, which specific cardiac features can
you pinpoint?
Answer: I can clearly tell the S1 and S2 components.

Q3: How would you compare the heart sounds produced by Asclepius to those you’d
typically hear using a stethoscope? Are there any inconsistencies that stood out?
Answer: In my experience, I have not observed any discernible differences between
the heart sounds produced by your technology and those usually obtained using a
stethoscope. The signal quality is exceptional.

⊲ P3: Playing the same PCG signals captured by Asclepius again, then playing
the stethoscope recording immediately afterward so the clinician can compare:
Q4: After listening to both, can you tell any differences between the recordings from
Asclepius and those from the stethoscope?
Answer: Yes, I can tell some differences between these two recordings. Asclepius’s
recordings are somewhat less crisp compared to those from the stethoscope, and there
seem to be some S3 sounds in the background. The stethoscope recordings, on the other
hand, have more distinct sounds and no S3 sounds.

⊲ P4: Playing pathological PCG sounds captured by Asclepius. The cardiologist
is informed that these clips were produced by our technology and sourced from a
patient. After the cardiologist responds to Q5, recordings from the stethoscope are
played for comparative analysis:
Q5: Based on these pathological heart sounds you just heard from our system, what
cardiac features caught your attention?
Answer: I picked up on the S1 and S2 components and also some evident murmurs.
Q6: After listening to both, can you pinpoint any differences between Asclepius’s
recording and the one from the stethoscope?
Answer: Honestly, I didn’t find any significant differences between the heart sounds
from Asclepius and those from the stethoscope.

⊲ P5: Engaging in a conversation with the cardiologist to discuss the advantages
and disadvantages of our technology:
Q7: From your expert viewpoint, can you share the benefits you see in using Asclepius?
Answer: Certainly. One potential benefit of your technology is that the earphone
recording method naturally produces less noise interference compared to a stethoscope.
We often face challenges with noise interference when using a stethoscope, which can
be caused by factors such as sweat on the skin, environmental noises, and improperly
fitted chest contacts. In contrast, earphones are less likely to pick up interference from
the ear canal. Additionally, the visual representation of heart sounds in your technology
is a significant advantage. We are pleased to have the ability to observe the PCG signal,
which will aid in identifying pathological features during auscultation. Furthermore,
your system could serve as a valuable tool for remote visits, fostering trust between
patients and clinicians by enabling auscultation.

Q8: Any thoughts on the limitations and challenges of Asclepius?
Answer: A potential challenge I see is tied to the practice of auscultation. Typically, we
move the stethoscope to different spots on the chest to obtain better signal quality from
specific areas of the heart, such as the right ventricle, pulmonary valve, or tricuspid
valve. This allows for an optimized signal quality and comprehensive assessment. With
earphones, such precise maneuvering isn’t feasible, which might restrict their capacity
to capture certain pathological heart activities in these specific areas.

sounds, and heart murmurs as critical features in cardiac aus-

cultation. In P2, cardiologists listened to a healthy individual’s

PCG signal captured by Asclepius and universally identified

the S1 and S2 heart features from the sound. P3 involved a

direct comparison between Asclepius’s recordings and tradi-

tional stethoscope recordings. While the majority found no

significant differences, a couple noted slight variations, with

descriptions like "less crisp" or "reverberated." P4 expanded

on this comparison, focusing on pathological heart sounds.

All cardiologists were able to recognize S1, S2, and murmurs

sounds in the Asclepius recordings, though one commented
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on differences in sound intensity. The session wrapped up

with a discussion about the strengths and potential limitations

of Asclepius. Due to the page limitation, we put all interview

results on our website and released one sample in Table 2.

In summary, the feedback from cardiologists provides in-

valuable insights into the clinical applicability of Asclepius.

Our thorough evaluation reveals that all cardiologists involved

could clearly identify essential cardiac features, such as the

S1 and S2 heart sounds and heart murmurs, in the record-

ings made by Asclepius. Additionally, discussions on the

system’s potential drawbacks also revealed further research

from a clinical perspective. For example, cardiologist A noted

the inability to precisely maneuver Asclepius over differ-

ent cardiac auscultation sites could limit its effectiveness in

detecting specific pathological heart sounds in certain areas.

Cardiologist B pointed out “while Asclepius streamlines the

process of heart sound monitoring, it shouldn’t be the sole

tool for diagnosis”. Cardiologist E emphasized the importance

of the human touch in medicine, stating, "The stethoscope

creates a direct connection between the doctor and the patient.

It might be challenging for Asclepius to replicate the tactile

experience of a physical examination." These clinical feed-

backs motivate us to continue our research on remote cardiac

auscultation, pushing its boundary even further.

6 RELATED WORK
As the next milestone of wearable, earable devices [5, 10–

12, 18, 28, 37, 61, 66, 92, 93] have attracted a lot of attention

recently. A growing interest in exploring earable techniques

is for cardiac monitoring [13], as summarized in Table 3.

For example, hEARt [6] utilized an in-ear microphone to

monitor heart rate (HR) under both stationary and moving

environments. Earmonitor [81] probed FMCW signals to the

ear canal and captured the ear canal reflections to infer the

HR and inter-beat interval (IBI). Similarly, EarACE [8] de-

veloped a versatile acoustic sensing platform that is capable

of extracting PCG envelop, specifically, the systolic and dias-

tolic intervals for heart rate variability monitoring using in-ear

microphones. More recently, APG [26] enables heart rate and

HRV monitoring by sending ultrasonic signals into the ear

canal and measuring the ear canal’s volume changes due to

blood vessel deformation. The APG waveform shows a strong

correlation with photoplethysmogram (PPG). However, dif-

ferent from Asclepius, these works adopt in-ear microphones

for physiological sensing, which are dedicated to costly ANC

headphones and are less accessible to the public.

Apart from these adds-on modalities, HeadFi [27], EarSens-

e [63], and other followup [73] explore the speaker transducer

on commodity earphones for physiological activity and ges-

ture sensing. However, EarSense achieves this goal by making

changes to the soundcard, which is usually prohibited on most

PCs and mobiles. HeadFi uses a Wheatstone bridge to remove

Table 3: Comparison of cardiac activity monitoring sys-
tems based on earables.

Solutions Functionality Sensing
modality

Earphone
category

eSense [3, 29] HR, HRV, BP, etc. In-ear PPG Customized

hEARt [6] HR In-ear mic. ANC

Earmonitor [81] HR, IBI In-ear mic. ANC

EarACE [8] PCG for HRV In-ear mic. ANC

APG [26] HR, HRV In-ear mic. ANC

HeadFi [27] HR Speaker All earphones

Asclepius PCG for auscultation Speaker All earphones

the music interference. As a side effect, the fine-grained car-

diac signals will also be canceled out. Accordingly, it is in-

feasible to use HeadFi to conduct cardiac auscultation, as we

experimentally demonstrated in §5.3. In contrast, Asclepius
takes a hardware-software co-design approach to maximize

the SNR of the PCG receptions on earphones and further

correct frequency distortions of raw PCG receptions due to

the multi-path propagation inside the human body, making

Asclepius eligible for capturing the detailed S1, S2 heart

sounds, as well as the potential heart murmurs.

7 CONCLUSION
We have presented the design, implementation, and evalua-

tion of Asclepius, a novel PCG signal detection system using

commodity earphones. By listening to the acoustic cardiopul-

monary signals captured by Asclepius, the specialists can

assess the patient’s health condition and make the most in-

formed diagnosis in video visit settings. The evaluation based

on 30 participants with various ages and BMI factors con-

firms the efficacy of Asclepius. The UX studies with these

participants and five cardiologists are also positive: over 80%

of participants show a willingness to use Asclepius and all

cardiologists highly appreciate Asclepius and believe it holds

great potential for remote auscultation. Overall Asclepius
makes the very first step toward remote auscultation, and

we believe it will spark novel ideas in heart sound sensing,

pushing the whole field moving forward.
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