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Figure 1: An illustration of Mobile Acoustic Field (MAF). MAF is based on a key observation – when audio is transmitted from
the bone conduction earphone, it will not only propagate along the surface of the human face but also dissipate into the air,
creating an acoustic field that envelops the individual’s head. This acoustic field empowers the mobile user to define their own
on-face and over-the-face hand gestures for human-computer interactions.

ABSTRACT
We present MAF, a novel acoustic sensing approach that leverages
the commodity hardware in bone conduction earphones for hand-
to-face gesture interactions. Briefly, by shining audio signals with
bone conduction earphones, we observe that these signals not only
propagate along the surface of the human face but also dissipate into
the air, creating an acoustic field that envelops the individual’s head.
We conduct benchmark studies to understand how various hand-
to-face gestures and human factors influence this acoustic field.
Building on the insights gained from these initial studies, we then
propose a deep neural network combined with signal preprocessing
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techniques. This combination empowers MAF to effectively detect,
segment, and subsequently recognize a variety of hand-to-face
gestures, whether in close contact with the face or above it. Our
comprehensive evaluation based on 22 participants demonstrates
that MAF achieves an average gesture recognition accuracy of 92%
across ten different gestures tailored to users’ preferences.

CCS CONCEPTS
• Human-centered computing→ Gestural input.

KEYWORDS
Wearable Computing, Gesture Detection, Acoustic Sensing

ACM Reference Format:
Yongjie Yang, Tao Chen, Yujing Huang, Xiuzhen Guo, and Longfei Shang-
guan. 2024. MAF: Exploring Mobile Acoustic Field for Hand-to-Face Gesture
Interactions. In Proceedings of the CHI Conference on Human Factors in Com-
puting Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM, New
York, NY, USA, 20 pages. https://doi.org/10.1145/3613904.3642437

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613904.3642437
https://doi.org/10.1145/3613904.3642437


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yongjie Yang, Tao Chen, Yujing Huang, Xiuzhen Guo, and Longfei Shangguan

1 INTRODUCTION
Hand-to-face gestures are a natural and intuitive way to control
devices or interfaces [89]. It improves the user experience across a
wide spectrum of applications from virtual reality to smart home
devices. At present, most hand-to-face gesture detection systems
rely on dedicated sensing modalities such as IMUs [1, 39, 47, 48, 60,
72] and capacitive sensors [23, 43, 65, 76] to detect gestures having
direct contact with the user’s face. However, these systems face
limitations in capturing contactless gestures (i.e., those gestures
performed over the face) because such gestures do not generate
signals that are detectable by the aforementioned sensors.

While camera-based solutions [6, 26, 27, 38, 58, 61, 82, 90] can
facilitate contactless hand gesture detection, their effectiveness
is vulnerable to varying lighting conditions, potential obstruc-
tions, and often raises privacy concerns. Similarly, radar-based
solutions [24, 49, 79, 80] can be influenced by distance variations
and occasional obstructions due to armmovement. In addition, they
often come with significant costs and power consumption [74],
which limits their wide adoption.

In view of the shortcomings and limits of the existing approaches,
in this paper, we ask a simple question – can we design a system that
is able to detect hand-to-face gestures, whether in contact with the
face or above it, using widely accessible mobile devices? A positive re-
sponse to this question would enable mobile users to experience the
advantages of gesture-based interactions in their everyday activi-
ties, moving this exciting technology one significant stride closer to
widespread adoption. Furthermore, we anticipate that such perva-
sive interactions, when integrated with emerging Extended Reality
(XR) technologies, could offer users unprecedented experiences.

We give an affirmative answer by presentingmobile acoustic
field (MAF), a novel acoustic sensing approach that leverages the
commodity hardware in bone conduction earphones for hand-to-
face gesture interactions. MAF draws inspiration from the principles
of surface acoustic waves (SAW) and leaky surface acoustic waves
(LSAW), which are well-studied in seismology. In particular, when
the speaker of the bone conduction earphones is in contact with
the user’s skin, the emitted acoustic signal will generate acoustic
radiation around the user’s facial structure in the form of surface
acoustic waves. In the meantime, part of the sound waves will
dissipate into the surrounding air, forming leaky surface acoustic
waves. The combination of these two signals effectively creates an
acoustic field surrounding the user’s head, which we refer to as
the Mobile Acoustic Field, as it is generated by widely available
earphones and moves with the user. User gestures performed on
or in the vicinity of the face can perturb the channel of SAW or
LSAW signals, as shown in Figure 2. By observing how the received
SAW and LSAW signals change over time, it is possible to detect
and further distinguish these gestures.

Compared with existing hand-to-face gesture recognition sys-
tems [12, 43, 47, 57, 71, 75, 82, 86, 87, 89], MAF offers several distinct
advantages. Firstly, its wearable nature guarantees that users can
move freely without any inconvenience or hindrance, always inter-
acting with the device seamlessly. Secondly, MAF does not depend
on specialized sensors or require any modifications to standard

bone conduction earphones. This means that mobile users can ef-
fortlessly enjoy hand-to-gesture interactions without any additional
equipment or alterations.

To harvest the aforementioned benefits, we first design a series
of benchmark studies to understand the capacity and capability
of the mobile acoustic field, answering a plethora of fundamental
questions such as "How does the sound volume affect the gesture
detection accuracy"? "Would the spacing between the hand and the
face matter"? and "What is the effective size of the mobile acoustic
field"? We then craft a plethora of user studies to 𝑖) examine the
impact of various human factors on the mobile acoustic field; and
𝑖𝑖) assess the social acceptance of this mobile acoustic field-based
gesture interaction by interviewing 22 participants. The preliminary
results are promising and the user feedback is generally positive.

Based on these promising preliminary results, we then build
a signal-processing pipeline for detecting and recognizing hand-
to-face gestures to showcase the potential of the mobile acoustic
field. To begin, we first create a set of 12 hand gestures, comprising
six performed on the face and six over the face. From this set,
we curate a selection of 10 gestures, consisting of four on-face
gestures and six over-the-face gestures, based on the preference of
22 participants. Given that over-the-face gestures tend to produce
relatively weak channel distortions, we propose a series of signal-
processing techniques combined with a Convolutional Recurrent
Neural Network (CRNN) model to segment the signal, enhance its
SNR, and subsequently recognize each of them accurately.

We follow the IRB protocol to conduct comprehensive field stud-
ies based on 22 volunteers. The experiment results show that MAF
achieves an average gesture recognition accuracy of above 92% for
all ten types of testing gestures. We further conduct benchmark
experiments in various environmental settings to scrutinize the
influences of environmental noise, earphone remounting, human
speech, bodymovement, skin moisture level, andmusic playback on
MAF’s performance. We observe that despite fluctuations amongst
these variables, MAF could adequately accommodate the demands
of most daily life settings.

Our contributions are summarized as follows:
• We identify a new opportunity for hand-to-face gesture in-

teraction based on commodity bone conduction earphones. We
study the capacity, robustness, and user acceptance of this new
interaction opportunity by designing a series of user studies.

•We demonstrate the potential of such a mobile acoustic field
for hand-to-face gesture interaction by building an end-to-end,
data-driven signal processing pipeline. The proposed approach can
effectively detect and further recognize ten user-selected gestures
at high accuracy (≥92%).

•We evaluate the performance of our prototyping system with
22 participants. In addition, we also conduct a comprehensive UX
study to gauge the users’ attitudes toward this new technology.

The remaining of this paper is organized as follows: Section 2
discusses related works in this domain. Section 3 starts with a
detailed introduction of SAW and LSAW, briefly touches on the
feasibility of the MAF systems, and then delves into their real-world
application scenarios. Section 4 examines the practical possibility
of integrating SAW and LSAW signals, evaluating them from three
different perspectives. Section 5 describes the development and
validation of signal processing and machine learning frameworks
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Figure 2: (a): Illustration of surface acoustic wave (SAW) and leaky surface acoustic wave (LSAW); (b): Touching the check twice
results in two peaks in the SAW signals; (c): Approaching the face leads to weak yet observable variations in LSAW signals.

for MAF. Section 6 assesses user perceptions of the MAF system
and examines the performance benchmarks of the MAF system in
a variety of challenging situations. Section 7 discusses the system
limitations and potential improvement. Section 8 concludes.

2 RELATEDWORK
In this section, we review sensor-based solutions for hand-to-face
gesture interactions, with a particular focus on acoustic-based and
earable-based solutions that are closely related to our design.

2.1 Vision-, RADAR-, and IMU-based Solutions
There exists a wide range of designs that employ various sensors to
detect facial gestures. The most extensively researched approach is
using computer vision [6, 26, 27, 38, 58, 61, 82, 90] for non-contact
detection. However, such an approach usually consumes signifi-
cant computational resources, which becomes a critical issue for
mobile and wearable platforms. Moreover, this approach also suf-
fers from low-lighting conditions and occlusions, raising privacy
concerns. mmWave radar [24, 49, 79, 80], on the other hand, has
also been employed to detect face contact. For instance, Li et al.
[44] demonstrated the use of microwave radar systems for hand
gesture recognition. Rojas et al. [68] employed sonar-inspired tech-
niques to measure the distance between the hand and the face and
trigger an alarm if the user approaches too closely. Besides, past
works also explored various types of wearable sensors for hand-to-
face gesture recognition. FaceTouch [52] utilized a vibration sensor
placed on the wrist or finger to track hand movements towards the
facial region, and the followups [1, 11, 53, 57, 60] had also lever-
aged accelerometer and inertial measurement unit (IMU) sensors
on commodity smartphones to detect facial touch.

Unlike these previous studies, we utilize a speaker-microphone
pair commonly found in everyday earphones for facial gesture in-
teraction. Our approach overcomes issues related to lighting condi-
tions and ensures privacy protection. In contrast to vibration or IMU
sensing, which operates at low frequencies, our system achieves
greater precision in gesture recognition thanks to its capability
to achieve a high sampling rate of up to 48kHz. When compared
to mmWave sensing, our solution is both more cost-effective and
power-efficient.

2.2 Acoustic-based Solutions
There is also plenty of research on using speaker-microphone pairs
for acoustic sensing. For instance, FaceOri [81] leveraged an ultra-
sonic chirp to track head position and orientation on earphones.

EchoSpeech [92] leveraged the inaudible sound emitted from an eye-
wear device to detect and further recognize silent speech. Sound-
Wave [25] employed inaudible band tones generated by the PC
speaker to detect gestures in the surrounding space, exploiting
the concept that various gestures induce distinct frequency shifts
due to Doppler effects. Sonicoperator [46] devised a recursive neu-
ral network and implemented it on mobile devices to recognize
mid-air human gestures. Additionally, Dolphin [63], Strata [91],
and AudioGest [69] also explored similar techniques for recog-
nizing human gestures. In another approach, CAT [56] employed
frequency-modulated continuous wave (FMCW) signals to estimate
the relative displacement between smartphone speakers and mi-
crophones, subsequently integrating Doppler shift data obtained
through FMCW with IMU measurements to enhance gesture track-
ing precision. Furthermore, fingerIO [64] had embraced orthogonal
frequency-division multiplexing (OFDM) modulation to monitor
subtle finger movements in the proximity of the phone. FingerP-
ing [93] further took advantage of multiple microphones mounted
on the wrist and thumb to recognize different hand gestures by
analyzing acoustic resonance features.

While these studies show promise, they often require explicit
user involvement or are primarily effective in static settings. For
instance, Sonicoperator [46] mandated that users hold the phone
and aligned the microphone to face forward for gesture detection,
restricting its usability to relatively stationary scenarios. Similarly,
SoundWave [25] functioned effectively when the user was seated
in front of a computer. In contrast, our system capitalizes on the
distinctive potential of themobile acoustic field generated by readily
available bone conduction earphones. This enables us to detect
hand-to-face gestures in both stationary and mobile environments
without necessitating explicit user intervention.

2.3 Earable-based Solutions
Earable computing [67] is a rapidly growing research field, with an
increasing amount of attention given to technologies surrounding
ear-based or headset applications for acoustic sensing. Lissermann
et al. [50] defined the possible ways of interacting around the ear.
Then there was a groundbreaking study by Chen et al. [12] dis-
covered that the majority of desired ear-based interactive gestures
involve mid-air hand interactions. HeadFi [18] transformed every-
day headphones into smart devices, making earable sensing easily
accessible. However, HeadFi required additional hardware support
and only allowed for conventional interaction with the existing
headset. FreeDigiter [59] integrated proximity sensors into ear-
buds, enabling near-ear non-contact input from finger gestures.
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FaceSense [37] designed an earbud with impedance sensing and
thermal sensing for gesture recognition. Earbuddy [86] leveraged
feed-forward microphones on ANC earphones to detect the sound
of touching gestures in the facial and ear areas for gesture recogni-
tion. However, it cannot detect non-contact, over-face gestures.

In a different approach, SonicASL [36] leveraged an external
speaker and a microphone facing toward the deaf individual to
recognize his/her sign language. Further, EarEcho [20] leveraged
in-ear microphones to identify different users based on unique
ear canal structures. Amesaka et al. [4] used facial muscle move-
ments to alter the transfer function of the user’s ear canal for facial
expression recognition. Meanwhile, BrianyHand [75] employed a
mini-projector and color camera within an earbud to relay input
feedback to the user’s ear. PrivateTalk [87] employed audio sig-
nals reaching the left and right ears to interpret the user’s intent
to interact. Similarly, Li et al. [47] designed voice-accompanying
hand-to-face (VAHF) gestures for voice interaction.

Different from the above approaches, we propose an active
probing-based approach that explores the surface acoustic wave
and leaky surface acoustic waves produced by bone conduction
earphones for both on-face and over-the-face gesture recognition.
This approach leverages the natural properties of bone conduction
to provide a more immersive and interactive user experience.

2.4 Surface Acoustic Waves and Leaky Surface
Acoustic Waves

We are not the first to explore surface acoustic waves for human-
centric sensing. There are a bunch of works [22, 30, 51, 62, 73, 83]
have already explored various types of sensors to generate surface
acoustic waves. These sensors include microphones [5, 28, 29, 34, 40,
54], IMU sensors [21, 35, 42], geophones [31, 66], and piezoelectric
devices [19]. The most recent work, SAWSense [33], explored a
newly emerging sensor known as a voice pick-up unit (VPU) for on-
desk gesturing. In a different vein, Leaky Acoustic Surface Waves
(LSAW) have more recently found utility in collision avoidance for
robotics [17, 19]. This concept was realized by deploying a pair of
piezoelectric sensors on a robotic arm to generate LSAW, enabling
the monitoring of obstacles encountered by the robotic arm.

Our work draws inspiration from these pioneering efforts but
distinguishes itself in two key ways. Firstly, MAF relies solely on a
pair of off-the-shelf bone conduction earphones, eliminating the
need for specialized sensors, such as piezoelectric sensors. Secondly,
MAF possesses the capability to monitor both on-face and over-the-
face gestures without any hardware modifications to the earphones.
Consequently, it holds significant potential to enhance a wide range
of facial gesture applications.

3 MOBILE ACOUSTIC FIELD: PRELIMINARY,
FEASIBILITY, AND APPLICATIONS

In this section, we first introduce the concept of the mobile acoustic
field (§3.1), highlighting its potential for hand-to-face gesture inter-
action through a feasibility study (§3.2). Subsequently, we describe
three representative mobile applications that can directly benefit
from the mobile acoustic field (§3.3).

Figure 3: (a) Sealing the earphone with a plasticine. (b) Top:
The signal wave produced by an approaching gesture without
the plasticine sealing. Bottom: The signal wave produced by
an approaching gesture with the plasticine sealing.

3.1 MAF Primer
When a mobile user uses bone conduction earphones to listen
to an audio clip, the electrical audio signals get transformed into
mechanical waves by the diaphragm of the earphone’s speaker.
Because the earphone is in direct contact with the user’s head,
these mechanical waves transfer their energy into the tissues of
the human head, forming Surface Acoustic Waves (SAW) [7]. SAWs
are a type of mechanical waves that propagate along the interface
between a solid material and its adjacent medium [7], exhibiting
a longitudinal and vertical shear component along the surface.
Furthermore, these surface acoustic waves also disperse into the
air as they travel through the user’s facial region, creating another
type of signal known as Leaky Surface Acoustic waves (LSAW) [77].

Both SAW and LSAW waves persist as long as the mobile user
continues to play audio, offering opportunities for interactions in
close proximity to the user’s face. Essentially, the combination of
these two signals generates an acoustic field that envelops the user’s
head, as shown in Figure 2(a). We term it as Mobile Acoustic Field
as it is produced by the headphones and moves with the user.

3.2 MAF for Hand-to-Face Gesture Interaction
We envision the mobile acoustic field can be leveraged to detect
and recognize different types of gestures that are performed both
in contact with the human face and in the vicinity of the human face
(i.e., over the face), without the instrument of any dedicated sensors.
To validate this feasibility, we invite a volunteer to wear a pair of
bone conduction earphone. The earphone emits a single tone at
the ultrasound frequency band. As the bone conduction earphone
is in close contact with the human face, this single-tone probing
signal produces surface acoustic waves and leaky surface acoustic
waves that propagate along the human head and get picked up by
a microphone attached to the bottom part of the left face.

We first ask the volunteer to gently touch her cheek. This physi-
cal contact not only generates a new signal but also has an impact
on how surface acoustic waves propagate. Consequently, in Fig-
ure 2(b), we can clearly observe significant deviations from the
original signal when two cheek-touching gestures are performed.
Leaky Surface Acoustic Waves (LSAWs) create an acoustic field
above the face due to the energy leakage from the surface acoustic
waves. As illustrated in Figure 2(c), when the volunteer moves her
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Figure 4: Three potential applications of MAF, out of many. (a): software-defined headphones that allow users to play and stop
music with in-air gestures. (b): enhanced gaming experience – the military game can automatically recognize user gestures in
the air with MAF. (c): face-touching awareness and prevention.

hand closer to or further away from her face (around 2 cm apart),
we also detect a subtle change in the received signals. This occurs
because the approaching hand gesture alters the way the leaky
waves propagate through the air.

One might wonder about the origin of these LSAW signals, ques-
tioning whether they stem from the movement of the rear section
of the earphone or the mobile acoustic field. To answer this ques-
tion, we seal the earbud with plasticine, as shown in Figure 3(a).
Figure 3(b) shows the signal wave produced by an approaching ges-
ture in the presence and absence of plasticine sealing, respectively.
We observed a clear signal pattern when the earphone was sealed,
which demonstrates that the LSAW signal is due to the mobile
acoustic field, not the motion of the rear part of the earpiece.

3.3 Applications of MAF
With the all-encompassing mobile acoustic field, the human head
becomes an independent space for interaction. Below we list a few
potential applications of MAF, out of many.
• Software-defined intelligent headphones. The current market
offers intelligent headphones like Bose QC35 and Microsoft Surface
headphones, which utilize built-in accelerometers to detect touch
gestures, enabling gesture control. However, these existing intelli-
gent headphones are expensive and bulky, limiting their widespread
adoption. As Figure 4(a) shows, we envision that mobile acoustic
sound can enable mobile users to define personalized gestures for
controlling volume, playback, andmuting without the need for dedi-
cated sensors. This approach eliminates the cost and bulk associated
with current intelligent headphones, offering a more accessible and
customizable gesture control solution for mobile users worldwide.
• Enhanced VR gaming experience. The on-face and over-the-
face human gesture interaction can be leveraged to enhance the vir-
tual reality (VR) experience. By accurately detecting and interpret-
ing the gestures of the user’s hands, the VR applications allow users
to manipulate and control virtual objects and perform various ac-
tions, without the need for physical controllers. Moreover, it opens
up possibilities for enhanced social interactions, particularly in sce-
narios depicted in Figure 4(b), like VR team-based shooter games
Larcenauts [3]. Users can communicate non-verbally through their
over-the-face hand gestures, fostering a more engaging shooting
game experience.
• Face-touching awareness and prevention. The identification
and monitoring of face-touching behavior are crucial in preventing
virus transmission and promoting hygienic practices, particularly

Figure 5: (a) Top: Touching gesture template 𝑥 (𝑡); Bottom: the
received touching gesture 𝑦 (𝑡). (b) Top: Approaching gesture
template 𝑥 (𝑡); Bottom: the received approaching gesture 𝑦 (𝑡).

during the COVID-19 pandemic when the virus can spread through
contaminated surfaces and close contact. However, existing solu-
tions, such as those based on earables and smart rings [37, 52],
can only detect face-touching after it has already occurred, lacking
the ability to proactively prevent virus transmission. In contrast,
the implementation of over-the-face detection utilizing the mobile
acoustic field allows for the detection of face-touching intentions by
capturing hand movements approaching the face, such as in Figure
4(c) shows. This capability enables a proactive approach to prevent
face-touching behavior and mitigate the risk of virus transmission.

4 FEASIBILITY STUDIES
To gain a comprehensive understanding of the mobile acoustic field
(MAF) for gesture-based human-computer interaction, we design a
plethora of benchmarks and user studies to effectively assess the
capacity (§4.1), robustness (§4.2), and user acceptance (§4.3) of MAF
in real-world scenarios. All human evaluations in this section are
conducted in full accordance with the internal Institutional Review
Board (IRB) protocol. The maximum signal transmission power is
set to 60 dB SPL, 10 dB lower than the CDC’s regulation [70].

We first introduce a gesture detection algorithm for feasibility
studies. Specifically, we apply cross-correlation to detect the pres-
ence of a human gesture in the time domain. Consider a template
signal 𝑥 (𝑡) and a received data segment 𝑦 (𝑡) where 𝑡=0,1,2...N-1,
the cross-correlation 𝑟 of these two signals is defined as follows:

𝑟 =

∑𝑁
𝑡=1 [(𝑥 (𝑡) − 𝑥) (𝑦 (𝑡) − 𝑦)]√︃∑𝑁

𝑡=1 (𝑥 (𝑡) − 𝑥)2 ∑𝑁
𝑡=1 (𝑦 (𝑡) − 𝑦)2

(1)
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Figure 6: Detecting approaching gestures in different volume levels or distance settings. (a): experiment setups; (b): the gesture
detection success rate in different volume settings (dB SPL); (c): the gesture detection success rate in different distance settings.
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Figure 7: The success rate of different detection methods.

where 𝑥 and 𝑦 are the mean of the template and received data,
respectively. A gesture is considered to be successfully detected
as long as the cross-correlation coefficient 𝑟 is higher than a pre-
defined threshold. A correlation coefficient close to 1 suggests a
strong positive relationship. In many cases, a value above 0.6 or 0.7
is often considered indicative of a strong positive correlation. So
we set the threshold to 0.7 in our experiment. The algorithm runs
by sliding the window by one sample each time. As a feasibility
study, we did not prioritize the optimality of the gesture detection
algorithm chosen. Instead, we opted for cross-correlation due to
its resilience to varying gesture intensities. It is worth noting that
many other advanced gesture detection algorithms could be applied
for improved performance.

Figure 5 shows two time series templates 𝑥 (𝑡) and the received
gestures 𝑦 (𝑡), respectively. To obtain a representative template
signal 𝑥 (𝑡), we collected the touching and approaching gestures 100
times, respectively. We then manually segment these 100 gestures
and pass each gesture through Wiener filter to remove background
interference. Since these 100 gestures last for different time periods,
we resize them into equal length (i.e., with the same length of
signal samples) through interpolation. The final template signal
𝑥 (𝑡) is derived by calculating the mean at each signal sample across
these 100 aligned and normalized gestures, effectively capturing
the average gesture pattern and its variability.

Figure 7 shows the gesture detection rate of the cross-correlation-
based solution and two other baselines that detect gestures in the
time and frequency domain, respectively. The time-domain baseline
compares the signal energy with a threshold to detect the gesture,
while the frequency-domain baseline compares the energy within
the Doppler frequency shift with a pre-defined threshold. To be

fair, the two energy thresholds1 are obtained by computing the
average energy of the same 100 gestures being used for determining
the threshold for our proposed gesture detection solution. The
testing set contains approaching gestures under different distances,
angles with respect to the face, and speed. As the result shows,
the time-domain baseline achieves merely 30% accuracy. This is
expected since different gesture speeds result in different signal
intensities while a fixed threshold fails to factor in such impact.
Moreover, body motions may also lead to a signal energy surge,
leading to false positives. On the other hand, the frequency-domain
method achieves slightly better performance (55% accuracy) since
it is resilient to body motions. However, its performance is also
sensitive to the variations of gesture intensities. In contrast, the
cross-correlation approach achieves 85%2 accuracy on average.

4.1 Understanding MAF’s Capacity
Q1: How does the sound volume affect the gesture detection ac-
curacy? Our initial investigation focuses on investigating whether
the intensity of the acoustic field generated by leaky surface acous-
tic waves is sufficient for detecting gestures. We invite two partici-
pants, named 𝐴 and 𝐵, to conduct this experiment in a controlled
laboratory environment. As shown in Figure 6(a), participant 𝐴
wears a pair of GZCRDZ bone conduction wired headphones [2]
and sits on a chair. The headphone speakers are in close contact
with the face so that the acoustic signal will not leak into the air.
The microphone on the bone conduction earphone is facing toward
the participant 𝐴’s face but has no direct contact with the skin.
This allows the microphone to detect both SAW and LSAW sig-
nals. The left speaker of the earphone emits a single-tone probing
signal at the ultrasound frequency of 18 kHz. At the beginning of
the experiment, participant 𝐵 proceeds to perform approaching
gestures by moving her palm closer to participant 𝐴’s face, with
1 cm spacing in-between. The involvement of two participants en-
sures the absence of body motion artifacts from participant 𝐴 that
could interfere with gesture detection. It also guarantees consistent
alignment of the palm each time they approach the face.

1For the frequency-domain baseline, we first identify the Doppler frequency shift due
to gestures and then calculate the average energy within the Doppler frequency band.
2We evaluate these three methods in challenging scenarios that require more intricate
hand or finger movements than those performed in Section 4.1 and Section 4.2.
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Figure 8: The effective coverage area of SAW signals and LSAW signals. The detection success rate of touching (top) and
approaching (bottom) gestures grows with the darkness of the heatmap.

▷ Experiment Results. We divide the human face into the left-
facial region, middle-facial region, and right-facial region. As de-
picted in Figure 6(a), within each region, we vary the sound volume
between the minimum 43 dB SPL to 60 dB SPL to assess the success
rate of gesture detection at different volume levels. We repeat the
experiment 20 times for each volume setting. Figure 6(b) shows the
success rate of gesture detection (referred to as the success rate in
the figure) across the left-, middle-, and right-facial regions of the
human face. We observe consistently high success rates (>95%) in
the left-facial region across all five volume settings. However, in
the middle-facial and right-facial regions, we notice that approach-
ing gestures are difficult to detect at low sound volumes (43 dB
SPL). This is expected because the sound source (the speaker) is
positioned on the left side of the human head. Consequently, the
sound signals (LSAW) attenuate significantly before reaching the
middle-facial and right-facial regions, resulting in a low success
rate for approaching gesture detection.

As we increase the sound volume to 45 dB SPL and further to
50 dB SPL, we observe a substantial improvement in the success
rate for the middle-facial region, reaching over 60% and eventually
surpassing 95%. Similarly, in the right-facial region, the success rate
increases to over 45% at 45 dB SPL and then reaches 95% at 50 dB
SPL. These preliminary experiments demonstrate the sensitivity of
gesture detection success rates to sound volume. However, a sound

volume of 45 dB SPL proved to be sufficiently strong for successful
gesture detection in the left-facial region. To ensure coverage of all
three regions, a slight increase in sound volume to 50 dB SPL can
be implemented without compromising safety requirements.

Q2: How does the gesture detection success rate change with
the spacing between hand and face? Next, we set the sound
volume to 45 dB SPL and examine how the gesture detection success
rate changes with the spacing between the hand and the face. We
anticipate the benchmark results could reveal the smallest spacing
in which the bone conduction earphones can generate detectable
waves around the user’s face. The experiment setup is similar to
the previous experiment.
▷ Experiment Results. Figure 6(c) illustrates that the approaching
gesture can consistently be detectedwhen the hand is within 5 cm of
participant𝐴’s left face. However, the success rate declines to below
80% as the spacing between the hand and the left face increases.
Furthermore, when the hand is 20 cm away from volunteer A’s
left face, the success rate drops below 50%. Notably, the success
rate decreases significantly in both the middle- and right-facial
regions compared to the left-facial region, primarily due to the
greater distance from the signal source (headphone speaker). For
instance, when the hand-to-face spacing is reduced to 10 cm, the
success rate in the middle- and right-facial regions decreases to 15%,



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yongjie Yang, Tao Chen, Yujing Huang, Xiuzhen Guo, and Longfei Shangguan

Left-facial Region Right-facial RegionMid-facial Region

(a) (b) (c) (d)

Figure 9: The set of histograms illustrates the success rates of gesture detection across different facial regions (left, middle,
and right) under various conditions. Histogram (a) focuses on the face-touching gesture under different hydration conditions,
while histogram (b) showcases the face-approaching gesture under the same hydration conditions. Evaluating (c) the detection
success rate of the face-touching gesture and (d) the face-approaching gesture under varied motion conditions. The symbols 𝐴,
𝐵, and 𝐶 denote the stationary state, walking state, and jogging state, respectively.

representing a 60% reduction compared to the left-facial region. In
practice, a longer detection distance may cause false alarms as a
nearby user may unintentionally trigger a gesture. Hence, we set a
targeting distance of 5 cm in order to minimize the false positives.

Q3: How does the mobile acoustic field look like? Finally, we
measure the effective coverage area of the mobile acoustic field. In
this experiment, we divide the region of interest into 12 sub-regions:
the left and right cheeks, forehead, chin, nose, top of the head,
back of the head, left and right neck, back neck, and left and right
shoulders. We detect the coverage area of both SAW signals and
LSAW signals by performing touching and approaching gestures
at these 12 sub-regions. The approaching gesture maintains an
effective spacing of roughly 5 cm ±1 cm between the hand and the
face. The sound volume is set to 45 dB SPL.
▷ Experiment Results. We use the heatmap to represent the
gesture detection success rate. As shown in Figure 8, we observe
that touching gestures generally achieve a broader coverage area,
with a significantly higher success rate due to the following two
reasons. Firstly, the touching gestures not only impact the surface
acoustic wave channels but also generate new signals that are
detectable by the microphone. This dual effect of touching face
gestures substantially modifies the received signal detected by the
microphone, leading to a notable increase in amplitude. Secondly,
the touching gestures occur at a closer distance to the microphone
sensor than approaching gestures.

Taking further scrutiny of the touching gestures (top figure in
Figure 8), the predominantly deep orange coloration around the
entire head area (>80%) indicates a high gesture detection success
rate. Interestingly, there is a notable exception in the user’s nose.
This is due to the relatively small contact area between hand and
nose, which results in a less pronounced signal path alteration. In
addition, other positions away from the head, e.g., the neck and
the front chest can still achieve around a 70% success rate. The
success rate declines significantly in areas such as the shoulders
and the back of the head, dropping to less than 30%. This decline is
due to the significant SAW signal attenuation over distance. Thus,
from a practical perspective regarding touching face gestures, we
focused on the head area due to its exceptional stability and optimal
recognition success rate.

Lastly, we shift our focus to approaching gestures, as shown
in the bottom figure in Figure 8. the left-side regions of the head,
including the left face, left neck, and left chin, represented as tri-
angular areas on the heatmap, exhibit a distinctly higher success
rate (>75%) compared to the rest. This striking difference under-
scores the fact the LSAW attenuates more severely than SAW due
to its air propagation path: it emanates from the left speaker on the
earphone, permeating the left face, and extending to the head and
shoulder areas. Hence the users could be instructed to focus their
gestures in the areas with the strongest signal transmission for the
highest recognition success rates. This would enhance the overall
user experience by ensuring the system responds accurately and
reliably to user inputs.

4.2 Understanding MAF’s Robustness
Next, we examine the robustness of the mobile acoustic field under
diverse conditions. Ideally, MAF should maintain its performance
within an acceptable range in the presence of both body movement
and changes in skin conditions.

Q1: Will facial hydration condition affect the success rate of
gesture detection? Firstly, we evaluate the potential effects of daily
facial skin condition changes on system performance. This is crucial
since the circadian rhythm can significantly influence various skin
conditions, including its hydration levels [55]. We invite a volun-
teer (participant 𝐴) to perform on-face touching and over-the-face
approaching gestures, once after applying a moisturizing mask in
the morning (hydrated facial state) and once following a typical
workday in the evening (dehydrated facial state).We label themicro-
phone’s position on the user’s face with a marker to ensure precise
remounting at the same location. This experiment is designed to
simulate common skin conditions and monitor their potential im-
pact on system performance. The experimental design follows the
setup used in the facial hydration state experiment, wherein the
left channel of a bone conduction earphone transmits an 18kHz
ultrasonic wave with an energy level of 45 dB SPL. The effective
detection distance for approaching gestures is also maintained at 5
cm ±1 cm.
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Figure 10: Gauging the initial feedback from 22 participants on the MAF system.

▷ Experiment Results. Figure 9(a) and Figure 9(b) show the suc-
cess rate of on-face touching gestures and over-the-face approach-
ing gestures in dehydrated and hydrated facial states, respectively.
The state of dehydration is characterized by the participant’s fa-
cial skin appearing oily and taut. Conversely, with hydration, the
participant’s skin condition is smooth and delicate. We observe the
success rate of both touching gestures and approaching gestures
remains consistently high in the two facial states, with slight differ-
ences when the user performs gestures in the right-facial regions.
This shows that facial skin conditions do not remarkably impact
the sensitivity of the microphone or the headset’s audio output,
thus not leading to a significant alteration in the signal path.

Q2: Will motion artifact affect the success rate of gesture de-
tection? Next, we experimentally validate whether different body
motions could disrupt the efficacy of the mobile acoustic field for on-
face (touching) and over-the-face (approaching) gesture detection.
In this controlled lab experiment, participants carry out touching
and approaching gestures in three movements: stationary, walking
(≈ 1.4m/s), and joggling (≈ 3m/s). Similar to the previous exper-
iment, the user plays a single-tone signal at 18kHz through the
left speaker on her bone conduction earphone. The sound volume
is fixed to 45 dB SPL. However, compared with the previous ex-
perimental settings, participant 𝐴 has been asked to complete all
experiments independently in this study, while participant 𝐵 only
played a supervisory role to ensure that the proximity gesture was
in line with 5 cm ±1 cm each time.
▷ Experiment Results. Figure 9(c) and (d) show the success rate
of on-face and over-the-face gesture detection at different regions
and in different motion state settings, respectively. We observe that
in the stationary state, the success rate of both on-face and over-
the-face gestures aligns closely with the heatmap results shown in
Figure 8. This essentially reveals that the resting participant using
their own hands did not significantly affect the MAF’s performance.
In the context of the two motion states under different speeds, we
observe a decrease in the success rate compared to the stationary

state. This is particularly apparent with the success rate of touch-
ing face gestures. For instance, the success rate of the right-facial
gesture drops from an original 85% to 25% during walking and
20% while jogging as shown in Figure 9(c). This decrease can be
attributed to a shift in the headphone’s speaker caused by touch
and body movement, leading to a corresponding shift in the trans-
mission ultrasound signal. Similarly, the approaching face gesture
in Figure 9(d) also shows a downward trend. However, despite a
noticeable decrease in the success rate from the static state, the
left-facial gestures consistently exhibit a robust success rate (>95%),
thereby assuring good gesture detection under any motion state.
This result manifests that the left-facial region can be fully relied
upon for over-the-face interactions under any tested motion states.

4.3 Understanding MAF’s social acceptance
Q3: Is MAF acceptable to mobile users? We create a Likert Scale
questionnaire and a simple gesture test to evaluate the user accep-
tance of the MAF system.
Participants & Apparatus. We have conducted tests involving 𝑁
= 22 participants, encompassing diverse skin conditions, ranging
from 16 to 54 years old, including both males and females. The
experimental setup aligns with the methodology employed in prior
studies [78], where all participants are directed to interact with
their only left facial regions—specifically by touching or positioning
their hands in close proximity. We execute each 20 sets of trials
of these two gestures under stable acoustic intensity and effective
distance. It only takes one person five minutes to complete this set
of experiments. To uphold the experimental rigor, the procedure is
conducted under the watchful guidance of a designated supervisor.
When each person completes these experiments, we show them
their gesture signals diagrams which are similar in Figure 2(b) and
(c), and explain the results to them.
▷ Experiment Results. The users’ feedback is shown in Figure 10.
First of all, we clearly see that users often use headphones in most of
their daily lives to carry out various entertainment activities, such as
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Figure 11: (a): the raw spectrogram of on-face and over-the-face gestures. (b): the spectrogram after applying narrow bandpass
and bandstop filters. (c): the spectrogram after the signal enhancement. (d): the two signal segments after applyingKL divergence-
based signal segmentation.

listening to music and watching videos, which indicates that head-
phones occupy an important position in our daily lives. Secondly,
in the initial stage of our straightforward experiment, we query
participants about their prior experience with gesture recognition
technology. A substantial 81.8% reveal they have never interacted
with such technology, whereas a minor portion, 18.2%, have some
experience, mainly through VR or AR platforms. Following this, we
enable users to explore face-touching and face-approaching gesture
recognition activities, later gathering their responses through a fi-
nal Likert scale questionnaire, focusing particularly on questions (d)
and (e). To our delight, an impressive 95% of participants describe
the gesture recognition method as incredibly intuitive and simple
to use. Furthermore, 91% find it is still comfortable to wear with
only minimal attaching to the microphone’s mouthpiece. Overall,
users’ recognition and expectations of the MAF system are positive.

5 SYSTEM DESIGN
Our system leverages the acoustic signal emitted from the bone
conduction earphones to generate the mobile acoustic field. Al-
though music signals can produce both surface acoustic waves and
leaky surface acoustic waves, their frequency and amplitude both
change abruptly over time, introducing variations to both the SAW
and LSAW. It’s thus challenging to disentangle the signal variation
caused by human gestures from the raw signal receptions.

In MAF, we proactively send out a probing signal on the ul-
trasound band to produce stable surface acoustic waves and leaky
surface acoustic waves. The probing signal works on the ultrasound
band for three key reasons. Firstly, it allows mobile users to per-
form gesture control while listening to music without interfering
with each other. Secondly, it is imperceptible to our human beings
and thus will not negatively affect the user experience. Thirdly,
compared to audible band signals, ultrasound at a higher frequency
band attenuates more rapidly and thus is less prone to false alarms
triggered by other users nearby. Moreover, it suffers less from ambi-
ent noises since most environmental noises are below 18kHz [9, 16].
We have measured the frequency response of three different pairs
of bone conduction earphones and empirically set the central fre-
quency of the probing signal to 18kHz. The user is free to use a
higher frequency within the range of 18kHz to 22kHz to transmit
probing signals if they can hear the lower frequency probing signal.

Single Tone vs. FMCW. We choose a single tone instead of the
chirp signal (FMCW) for two reasons. Firstly, we find that the
frequency response of most earphone speaker transducers in the
ultrasound band varies significantly. This implies that the power of
a chirp signal is not uniform across the frequency band. Given that
the power fluctuation of the received signal is a crucial feature of our
gesture recognition model, the inconsistency in chirp signal power
has the potential to impact the performance of our model. Secondly,
we find that sending continuous chirps will lead to hearable noises.
This is because continuous chirp signals will trigger sharp impulse
responses in the system, leading to the generation of transient
signals that manifest as audible noise.

5.1 Signal Pre-processing
Figure 11 shows our proposed signal pre-processing pipeline. The
raw signal received by the microphone first passes through a se-
ries of filters to extract the gesture-induced signals from the noise
receptions. These processed signals are then fed into a signal en-
hancement module to improve their SNR.
Step One: Filtering. The received signal is first fed into a But-
terworth bandpass filter with a cutoff frequency of 𝑓𝑝𝑟𝑜𝑏±50Hz in
order to remove the out-of-band noises. 𝑓𝑝𝑟𝑜𝑏 is the frequency of
our probing signal on the ultrasound band. Subsequently, we pass
the filtered signal through a Butterworth band-stop filter with the
central frequency of 𝑓𝑝𝑟𝑜𝑏 . This allows us to remove the probing
signal from the receptions while preserving the frequency varia-
tion caused by hand-to-face gestures, thereby enhancing its SNR.
Figure 11(b) shows the received signal after passing the filters. Ev-
idently, the signal variation due to facial gestures becomes more
prominent after the filtering step.
Step Two: Signal Enhancement. To attain precise segmentations
inMAF, it is essential to mitigate the effects of the in-band noise
artifacts as well. One significant contributor to these artifacts is
the probe signal, which generates multipath components [9] as it
traverses different channels on the face, such as bones and fats,
subsequently affecting the accurate detection of SAW and LSAW
when the gesture commences (as illustrated in Figure 11(b)). Given
that these multipath artifacts and the probing signal exhibit overlap-
ping frequency components, prior band-pass filter (BPF) strategies
are incapable of isolating the noise effectively. Thus, we leverage
Wiener filtering [15] to manage such frequency-overlapped noise.
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Figure 12: Model structure of MAF, it consists of five Convolution layers, a bi-directional LSTM layer, and an MLP.

Threshold Precision Recall F1 score Threshold Precision Recall F1 score

0 0.550 1 0.762 0.55 0.993 0.700 0.821
0.05 0.870 1 0.930 0.6 1 0.615 0.762
0.1 0.948 1 0.973 0.65 1 0.560 0.718
0.15 0.971 1 0.985 0.7 1 0.550 0.710
0.2 0.969 0.950 0.960 0.75 1 0.550 0.710
0.25 0.978 0.905 0.940 0.8 1 0.520 0.684
0.3 0.978 0.880 0.926 0.85 1 0.495 0.662
0.35 0.982 0.820 0.894 0.9 1 0.455 0.625
0.4 0.981 0.780 0.869 0.95 1 0.435 0.606
0.45 0.980 0.735 0.840 1 1 0.435 0.606
0.5 0.993 0.730 0.842

Table 1: Find the threshold for segmentation algorithm.

Specifically, we first collect a short segment of noise samples
lasting 0.3 seconds. This step facilitates the analysis of the noise’s
frequency characteristics, thereby assisting in the accurate deter-
mination of the Wiener filter’s parameters. Subsequently, these
parameters are employed to filter out successive time frames shar-
ing identical frequency characteristics. InMAF, the Wiener filter
predominantly gathers the time frames that encompass the multi-
path occurring between the speaker and microphone pair when the
probing signal initiates. As depicted in Figure 11(c), the application
of the Wiener filter substantially reduces these multipaths when a
gesture commences, thereby enhancing the discernibility of each
gesture’s initiation point and duration.

5.2 Segmentation
Next, we divide the received audio wave into a sequence of audio
segments and feed those segments containing human gestures into
the classifier for gesture recognition. To detect the presence of a
gesture in a segment, an intuitive solution is to apply a pre-defined
threshold to the audio wave to detect the energy variations caused
by human gestures. However, this method is not scalable as it
does not consider the fluctuations in signal energies resulting from
diverse human behaviors, such as varying user strengths.

To tackle this challenge, we employ a Kullback-Leibler (KL)
divergence-based method [13] to detect the presence of a gesture
within each segment. Specifically, for any two consecutive audio
segments, we compute the energy probability distribution of these
two segments, denoted as 𝑃 and𝑄 , respectively. The KL divergence
quantifies the information loss when 𝑄 approximates 𝑃 :

𝐷KL (𝑃 ∥ 𝑄) =
∑︁
𝑖

𝑃 (𝑖) log
(
𝑃 (𝑖)
𝑄 (𝑖)

)

When there is no gesture shows up, the two audio segments are
full of ambient noises. Accordingly, their energy distribution would
be similar. Accordingly, the KL divergence value would be close
to 0. Conversely, when a gesture shows up, its energy distribution
would differ from the audio segment containing purely ambient
noise. Hence, we are expected to see a large KL divergence value.

To find a proper length of the audio segment, we assessed the
duration of the gestures collected from 22 users across different
ages (details can be found in §6.2.1) and found the longest gesture
lasting around 2s. So we adopt a slightly larger segment size of
2.5s with a 50% overlap to ensure the completeness of the gesture
within each audio segment. Figure 11(d) shows the on-face and
over-the-face gestures after segmentation. Additionally, to find a
proper threshold for KL divergence that effectively distinguishes
significant probability distribution differences between P and Q in
gesture detection, we collected 100 touch gestures and 100 prox-
imity gestures and analyzed the detection precision and recall in
different threshold settings. As shown in Table 1, a lower threshold
increases detection sensitivity (a higher Recall). But the precision
suffers as small signal fluctuations would be taken as a gesture.
Conversely, a higher threshold risks missing subtle but important
signal variations, leading to a lower recall but a higher precision.
InMAF, we adopt 0.15 as our threshold, which strives for a balance
between precision and recall, as shown in Table 1.

5.3 Gesture Classification
In the final stage, we aim to differentiate the specified gestures
withinMAF. Inspired by the success of the Deep Neural Network in
the applications of image and audio fingerprinting classifications,
we introduce a data-driven framework to identify these on-face
and over-the-face gestures inMAF. The overall frame consists of
two parts: feature extraction, and model training.
Feature extraction.MAF processes audio data for gesture classi-
fication using a short-time Fourier transform (STFT) spectrogram
directly. Compared with the 1D time series signal, the 2D STFT
spectrogram is considered to generally provide richer information
on the feature representations [8] and has better temporal and fre-
quency localization properties than a one-dimension waveform
in the time-domain [14], making it a unique fit to the classify the
nonstationary human gestures. Different from the prior works [86]
applying a Mel spectrogram for classification, we apply the STFT
spectrogram directly inMAF. The reason is that the non-linear Mel-
scale emphasizes the fine-grained spectral structure in the lower
frequency range, which is more important for speech recognition,
but less critical for gesture detection in the high-frequency band
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Figure 13: 12 gesture candidates for user evaluation. Among them, the first six (𝑎, 𝑏, 𝑐, 𝑑 , 𝑒, 𝑓 ) are on-face gestures whereas the
last six (𝑔, ℎ, 𝑖, 𝑗 , 𝑘 , 𝑙) are over-face gestures. At the bottom of each gesture, we put the average score indicating user preference,
with a higher score indicating greater user satisfaction with that particular gesture.

(>18kHz). Due to the acoustic signal being quasi-stationary within
a short time (e.g., 2–50ms) [10], we select the frame length of our
spectrogram input to 2048, corresponding to 20ms within the sam-
pling rate of 48,000 Hz. The hop length is set to 1024. Accordingly,
the frequency resolution is around 23Hz within each sample point.
Model structure.MAF adopts a hybrid neural network architec-
ture to enhance the classification performance, as depicted in Fig-
ure 12. Specifically, we employ a combination of Convolutional
Neural Networks (CNNs) and a Recurrent Neural Network (RNN)
layer to facilitate superior feature extraction before inputting the
spectrum feature representations into the multilayer perceptron
(MLP) for classification [52]. The architecture encompasses five
CNN encoder layers, a bi-directional LSTM layer, and a classic
multilayer perception (MLP) structure. Each CNN layer is config-
ured with a 2D convolution, a batch norm, a ReLU function, and a
dropout regularization. The stride is set to 2.

Given that the gesture representation usually spans across a
frequency band of 150Hz, we have designed the kernel size of the
initial two convolution layers to be 7×7. This decision ensures that
the receptive field is adequately sized to encapsulate a complete
gesture component within the spectrogram, thus enhancing the
feature extraction efficacy. Subsequently, the high-dimensional fea-
tures extracted are forwarded to the LSTM layer, which enhances
the temporal connections between individual time frames. This
LSTM layer acts as a bridge, conveying the refined feature set to
the MLP. The MLP processes the features received from the LSTM
and outputs the prediction results. To compute the loss, we utilize
the cross-entropy loss function.

6 EVALUATION
6.1 Study One: Gesture Selection
Building upon prior research on hand-to-face interactions [45, 85,
86, 88], we devise a set of 12 distinct gestures. Among these, six
are performed directly on the face, while the remaining six are

performed in proximity to the face (a.k.a., over-the-face gestures).
Figure 13 illustrates these 12 gestures. Subsequently, we invite par-
ticipants to rate each gesture, indicating their personal preferences.
Our objective is to assess whether the gesture set we are crafting is
aligned with user preferences and intuitive behavior.
Participants & Apparatus. The identical group of 22 participants
who participate in our previous user study Section (§4.3) are enlisted
for this particular experiment. To be precise, each participant is
asked to wear the bone conduction earphones and execute the set
of 12 gestures illustrated in Figure 13. Upon the completion of the
gesture performance, each participant is requested to complete a
Likert scale questionnaire. In this questionnaire, they are prompted
to rank these 12 gestures (on a scale from 1 to 5, the higher the better)
based on their individual preferences. Notice that the volunteers #6,
#10, and #20 have noticeable facial hair. So we tape the microphone
on top of their facial hair.
Results. In Figure 13 representing each gesture, we mark the av-
erage score associated with each gesture at the bottom. From the
results, we observe that the participants generally prefer over-the-
face gestures to on-face gestures. On the other hand, comparing
gestures ℎ and 𝑖 , as well as 𝑗 and 𝑘 , we can also see that users prefer
to perform gestures only once, indicating that users prefer simple
and efficient gestures. Notably, gestures 𝑐 and 𝑓 receive the lowest
scores, averaging around 1.41. Participants’ feedback highlights
that they find these two types of gestures uncomfortable as they
involve pinching the face, potentially causing discomfort or even
pain. Furthermore, they indicate that performing these gestures
in public could be viewed as inappropriate or uncouth. Based on
these user study results, we finally decide to keep the palm single
and double pressing, pinching ear and covering the face for on-face
gestures (𝑎, 𝑏, 𝑑 , 𝑒) and including all of the over-face gestures: fist
open and close, the palm sliding once or twice, the fist single and
double click, and one palm approaching (𝑔, ℎ, 𝑖 , 𝑗 , 𝑘 , 𝑙 ).
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Figure 14: Training loss and validation
loss curve over different training epochs.

Figure 15: The confusion matrix of ges-
ture recognition.

Figure 16: The feature distribution of ten
different gestures.

6.2 Study Two: Gesture Recognition
In this section, we first describe the experiment setups (§6.2.1) and
then discuss the experiment results (§6.2.2).

6.2.1 Experiment Setups. The same group of 22 participants
was recruited for our field study. Within this group, there were 12
male participants and 10 female participants, with an average age
of 26.8 years and a standard deviation of 9.0.
Data collection. All participants used the same pair of bone con-
duction earphones during the data collection process. To ensure
consistency, themicrophone’smouthpiecewas taped approximately
three fingers’ width away from the participant’s earlobe, on their
cheek.3 Following this, a supervisor connected the earphones to
a laptop and emitted an 18kHz frequency signal at a consistent
volume (45 dB SPL), ensuring that the ultrasound signal remained
inaudible to the participants. The microphone recordings from the
earphones were captured using a Matlab program. Simultaneously,
the supervisor recorded video footage of the participants perform-
ing gestures to establish the ground truth. Each participant was
instructed to execute each type of gesture 20 times, resulting in a
total time commitment of approximately 15 minutes. In total, we
collected 4,400 gesture recordings.
Model Training and Evaluation. Our CRNN model is imple-
mented in Pytorch and trained on an NVIDIA A100 GPU for 150
epochs, using a batch size of 32. We employ the Adam optimizer
with a learning rate set to 0.001. Then we adopt a Leave-One-Out
approach, specifically a 5-fold cross-validation approach, to eval-
uate our CRNN model. In this setup, we divide the data from 22
participants into 5 groups, with each group containing data from
4 or 5 participants. During each iteration of cross-validation, one
group is left out as the test set, while the combined data from the
remaining groups are used as the training set. This ensures that
each group has the opportunity to serve as an independent test set,
and also accounts for potential correlations between participants’
data, providing a more comprehensive assessment of the model’s
generalization capabilities.
Evaluation Metrics. We adopt gesture recognition accuracy as
the metric to evaluate the performance of our proposed solution.

3The microphone is taped on the participant’s face because the bone conduction
earphone being used in our experiment adopts an inline microphone.

The recognition accuracy is formally defined as:

Recognition Accuracy =
# of correctly recognized gestures

# of gestures being tested
(2)

Additionally, we also use precision, recall, F1 score, and accuracy
to assess the model’s performance.
Prevent Overfitting. We take the following actions to prevent
model overfitting. Firstly, we adopt leave-one-out cross-validation
to ensure the testing is performed on unseen data (i.e., collected
from other users). Secondly, our model adopts L2 regularization to
penalize large weights, which helps prevent the model from fitting
the training data too closely. Thirdly, to mitigate overfitting, we
have implemented early stopping and dropout layers. Figure 14
shows the training and validation loss curves both trend down-
wards consistently. The training loss gradually decreases upon
adding training examples and flattens gradually. The validation loss
decreases upon adding training examples and flattens gradually. We
notice that there is a gap between the training loss and validation
loss after 50 epochs, indicating addition of more training examples
doesn’t improve the model performance on unseen data. Hence our
model did not overfit.

6.2.2 Experiment Results. In this section, we report the evalua-
tion results based on the data collected.
1○ Gesture Recognition Accuracy Across Ten Types of Ges-
tures. Figure 15 shows the confusion matrix illustrating the results
for the ten tested gestures. Among them, gestures 𝑎, 𝑏, 𝑑 , and 𝑒 are
detected using SAW signals, while the remaining six gestures (𝑔,
ℎ, 𝑖 , 𝑗 , 𝑘 , 𝑙) are recognized using LSAW signals. Additionally, we
have included a default gesture to serve as a reference, indicating
no specific gesture being performed.

We have four observations. Firstly, the model can successfully dif-
ferentiate between signals that contain gestures and those contain
no gestures. Secondly, the recognition accuracy for most of these
gestures surpasses 92%, demonstrating the efficacy of our proposed
signal processing algorithms. Thirdly, LSAW signals outperform
SAW signals in recognizing facial gestures. This observation sug-
gests that the MAF system demonstrates increased sensitivity when
detecting expansive movements or gestures that span a wider spa-
tial area. Fourthly, we observe a notable challenge in accurately
classifying the "fist open and close" gesture (𝑔), with a recognition
accuracy of merely 83%. To understand the reason for this inferior
performance, we further visualized the feature distribution of these
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(a) (b) (c)

Figure 17: Examine the gesture recognition accuracy. (a): the gesture recognition accuracy across 22 participants. (b): the gesture
recognition accuracy across four age groups. (c): the gesture recognition accuracy across different genders.

Model Precision Recall F1 score Accuracy

SVM 0.550 0.547 0.550 0.547
Random Decision Tree 0.555 0.541 0.543 0.541
K-Nearest Neighbors 0.565 0.559 0.545 0.559

RNN only 0.613 0.613 0.613 0.565
CNN only 0.823 0.793 0.808 0.817

CRNN (ours) 0.949 0.949 0.949 0.928

Table 2: Test results of different models, and the final
weighted values of Precision, Recall, F1 score, and Accuracy.

ten gestures in Figure 16. As shown, the features of the gesture
"fist open and close" (𝑔) overlap with the feature of the gesture "fist
single click" ( 𝑗 ). This confusion stems from the similarity in the
hand movement involved in both gestures.
2○ Overall Performance Across Different Users.We first exam-
ine the gesture recognition accuracy across all 22 participants. To
do this, we have calculated the mean gesture recognition accuracy
for each individual based on their performance across 10 different
gestures and repeated each gesture twenty times to ensure the re-
liability of the results. The results are shown in Figure 17(a). We
observe thatMAF consistently demonstrates strong performance,
consistently exceeding 91% accuracy across all 22 participants. No-
tably, only participants #7 and #11 achieve a slightly lower accuracy
of approximately 89%. On the whole, these results reaffirm the
overall effectiveness of MAF.
3○ The Impact of Different Ages. Prior works have shown that
people of different ages tend to perform gestures differently [94, 95].
For instance, a senior may perform a gesture slightly slower than
a junior. Moreover, the difference in palm size and finger length
across different age groups can lead to distinct effects on the re-
ceived signal. Furthermore, people of different age brackets may
exhibit distinct levels of facial skin moisture, which could impact
the propagation of both SAW and LSAW signals. Hence we conduct
experiments to examine the impact of different ages on our system.
In this experimental, we classify the 22 participants into four age
groups: Group 1 (under 22 years old), Group 2 (between 22 and
25 years old), Group 3 (between 26 and 30 years old), and Group
4 (above 30 years old), as illustrated in Figure 17(b). The results
reveal a relatively consistent gesture recognition accuracy across
these four groups, averaging 92%. However, it’s worth noting that
the variance in gesture recognition accuracy is slightly higher in
Groups 1, 2, and 4 compared to Group 3. The superior accuracy

observed in Group 3 may be attributed to the stability and consis-
tency demonstrated by participants in this age bracket in terms of
ease of gesture manipulation performance, physical coordination,
and even skin moisture conditions.
4○ The Impact of Different Genders. Likewise, there will be
inherent differences in how men and women naturally execute ges-
tures as people in different genders differ in their palm size, finger
length, and the strength as well as the speed when performing
a gesture [95]. This could lead to variations in the received SAW
and LSAW signals. Consequently, we conduct an analysis of ges-
ture recognition performance across different genders. Figure 17(c)
shows the accuracy of gesture recognition for both on-face and
over-the-face gestures. Across both genders, we observe consis-
tently high performance for gestures made away from the face
(over-the-face), averaging 98%. However, regarding the recognition
of on-face gestures, there is a noticeable disparity: females exhibit
an accuracy rate of 88%, compared to males who achieve an accu-
racy of 84%. Moreover, there is a notably higher variance in the
accuracy of on-face gesture recognition across both genders. While
differences in gesture intensity might contribute to this variation,
we also suspect that the smaller amount of training data available
for on-face gestures (in comparison to eight types of over-face
gestures) could be another contributing factor.
5○ Comparison Between Different Models. We also compare
our CRNN model against a few other classification methods such as
random decision trees, K Nearest Neighbor (kNN), Support Vector
Machine (SVM), and basic deep learning models consisting solely of
CNN or RNN components. All methods have undergone identical
signal pre-processing procedures, including filtering, enhancement,
and segmentation. Furthermore, we employ identical training and
testing datasets for all of these models to ensure a fair comparison.

The results are shown in Table 2. Our CRNN model exhibits
remarkable superiority over traditional classifiers, achieving an
accuracy of 92.8% compared to 54.7% for SVM, 54.1% for Random
Decision Trees, and 55.9% for K-Nearest Neighbors. The gesture
recognition accuracy of the RNN model experiences only a slight
increase to 56.5%. This limited improvement may be attributed to
the RNN’s predominant focus on temporal data, potentially over-
looking crucial spatial characteristics inherent in gestures. The
utilization of the CNN model results in a significant leap in gesture
recognition accuracy to 82%. This improvement can be attributed
to CNN’s robust capability to extract essential spatial features from
the spectrogram data. When we combine the strengths of both CNN
and RNN in our hybrid RCNN model, the gesture recognition accu-
racy peaks at 92.8%, surpassing all baseline models significantly.
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Figure 18: Feedback from 22 users was gathered through a Likert scale questionnaire after using MAF.

6○ Subjective Evaluation. We have administered a second Likert
scale survey to each individual after using MAF. The goal is to
evaluate their perspectives on the usability of MAF. The results
are shown in Figure 18. Encouragingly, a substantial 86.4% finds
the MAF approach engaging, with no one stating that it wasn’t.
Furthermore, we find that 17 participants considered the difficulty
of executing the 10 gestures as acceptable. As a follow-up step,
from the results in the first survey of Figure 10(c), only 8 users
have previously encountered the conveniences afforded by gesture
recognition technology, and 6 of them found our MAF technology
to be more appealing. Moreover, all 22 interviewees believe that
MAF could enhance the market allure of VR/AR headsets, with 21
indicating a willingness to purchase the service should it become
available on the market. Ultimately, a positive sentiment towards
the overall satisfaction with MAF is expressed by 21/22 participants.

6.3 Study Four: Micro-Benchmarks
We also conduct micro-benchmarks to understand the impact of
various factors on system performance.
1○ The Impact of Body Motions on Segmentation. We next
evaluate whether body motions can fool the segmentation algo-
rithm. A volunteer was asked to follow the instructions to perform
gestures: starting with the user sitting down, followed by touching
his face, eating, approaching the face, and speaking, each for 2.5 sec-
onds. The volunteer repeated the above process 100 times. Table 3
shows the result. The touching gestures and approaching gestures
can be successfully detected at a rate of 100% and 96%, respectively.
For body motions, we found sitting down and eating are rarely
recognized as the presence of gestures. However, we noticed that
human talking are easily recognized as the presence of gestures,
with a rate of 82%. These false positives will be inherently sent to
the classification model for gesture recognition. Recall that our clas-
sification model was trained with both gestures and non-gestures.
So it will filter out these body motions during classification (i.e.,
putting them into the default non-gesture class).

Action Identified as a Gesture

Sitting 4%
Touching 100%
Eating 11%
Approaching 96%
Talking 82%

Table 3: A volunteer is asked to execute two gestures (touch-
ing and approaching) and three distinct bodymotions (sitting
down, eating, and talking), each repeated 100 times. We feed
the corresponding signals into the segmentation algorithm.

2○ The Impact of Environmental Noise. To evaluate the ro-
bustness of our system in environments with varying noise levels,
we simulate different noise levels typically encountered in daily
human activities as referenced in [32]. During these experiments, a
participant is instructed to perform each of the 10 gestures 20 times,
amidst white noise emitted from a speaker at different volumes:
40 dB SPL, 60 dB SPL, and 80 dB SPL, as illustrated in Figure 19(a).
Utilizing our pre-trained model, we then assess the impact of these
noise levels on gesture recognition accuracy. Our analysis indicates
that increasing noise levels could compromise the system’s ability
to accurately recognize gestures. This could be attributed to the
interference created by noise reflections over the face, affecting the
formation of the MAF that could obstruct precise gesture recogni-
tion. However, it is encouraging to note that our system maintains
stability at a noise level of 40 dB SPL, proving to be highly reliable
for indoor activities such as VR gaming. This underscores thatMAF
can accommodate the majority of daily activities.
3○ The Impact of Earphone Remounting.We conduct experi-
ments to evaluate the impact of earphone remounting on system
performance. Initially, under the supervision of a researcher, a par-
ticipant places the earphone’s microphone at a designated position
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Figure 19: Examine the gesture recognition accuracy in different environments and human factor settings. (a): the gesture
recognition accuracy in different ambient noise environment settings.(b): the gesture recognition accuracy at different re-
mounting positions. (c): the gesture recognition accuracy in the presence of human speech. (d): the gesture recognition accuracy
in different levels of human activities. (e): the gesture recognition accuracy in different skin hydration settings. (f): the gesture
recognition accuracy in the absence and presence of music playback.

on her left cheek, labeled as position P0. Subsequently, the partici-
pant independently remounts the microphone and performs each
gesture 20 times, respectively. The participant repeats the above
process four times. We denote these remounted positions as P1,
P2, P3, and P4, respectively. Figure 19(b) shows the results. We
observe that at the first repositioning (P1), there is a slight decrease
in segmentation accuracy. This performance drop is attributed to
the participant’s unfamiliarity with the microphone-taping pro-
cess, which results in suboptimal microphone placement affecting
the detection of off-face gestures. When the participant gets famil-
iar with the microphone mounting process, there is a noticeable
improvement in segmentation accuracy in the subsequent three
repositioning attempts (e.g., P2, P3, and P4). This improvement in-
dicates that the participant becomes increasingly adept at using the
MAF system, leading to more effective microphone placements.
4○ The Impact of Human Speech. To assess the impact of verbal
communication on our system’s performance, we have devised an
experiment where participants are required to perform gestures
while concurrently having a conversation. In this trial, each par-
ticipant is tasked with repeating each gesture 20 times, and the
collected data is classified using the same pre-trained model. As
illustrated in Figure 19(c), a noticeable discrepancy in accuracy is
observable when comparing on-face gesture recognition of loud
speech to soft speech. This phenomenon can be attributed to the
significant movement in the cheek area that occurs during loud
speech, which interferes with the signal propagation of gesture
transmission. Nevertheless, the median results indicate that the
recognition accuracy remains approximately 90%, regardless of the
volume of speech. This stability is largely due to our signal prepro-
cessing filtering phase, where the frequencies commonly associated
with verbal communication and their harmonics are effectively
eliminated, ensuring the integrity of gesture recognition.

5○ The Impact of Body Motions. We evaluate the impact of body
motions on gesture recognition accuracy. Specifically, we invite
a participant to perform 10 gestures under the walking state and
jogging state. Each gesture is repeated 20 times. The same pre-
trained model is used to recognize gestures collected in these two
states. Figure 19(d) shows the results. We find that under differ-
ent body movements, we can still recognize 10 different gesture
signals, but the median recognition accuracy drops to below 90%
for walking and performs worse in jogging. This also reaffirms the
results of Section (§4.2), indicating that the motion state affects our
posture recognition rate. The reason is that the recognition can
be influenced by the movement of the head and the tightness of
the headphone wear, affecting the formation of the MAF. However,
the above 80% recognition accuracy is still acceptable, showcasing
significant accuracy despite the challenges presented by physical
movements. Future improvement of MAF might focus on imple-
menting advanced algorithms capable of compensating for the
disturbances generated by these physical activities.
6○ The Impact of Skin Hydration. The circadian rhythm notably
influences the skin’s water permeability, the hydration level of facial
muscles, and the concentration and dispersion of oils in the stratum
corneum in individuals [55]. Since these factors can vary at differ-
ent points in the day, we design an experiment to assess whether
these changes affect the accuracy of gesture recognition signals. We
experiment 20 times with 10 gestures in the morning and evening
with the same participant. We label the microphone’s position on
the user’s face with a marker to ensure precise remounting at the
same location. From the results of Figure 19(e), the pre-trained
model struggles to perform well when participants have oily skin
after a day’s activities. This is largely due to the natural oil buildup
on the facial skin over the course of the day, which can disrupt the
accuracy of the gesture recognition process.
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7○ The Impact of Music Playback. We then conduct an experi-
ment to assess if music playback affects gesture recognition. The
participant wears the headphones while a computer played a song
mixed with our 18kHz probing signal. We evaluate the recognition
accuracy of ten gestures performed by the participant. We also plot
the gesture recognition accuracy in the absence of music playback
for comparison. As shown in Figure 19(f), our system achieves
above 90% accuracy in the presence of music playback, which is
consistent with that achieved in the absence of music playback. This
is because the frequency of music signals is usually below 15kHz,
and thus will not interfere with our probing signals. These music
signals will be further filtered out during our signal processing.
These results affirm that our system supports gesture recognition
without compromising the headset’s music playback function.

7 LIMITATIONS
Restricted to Bone Conduction Headphones. We experiment
with different types of headphones, including on-ear, over-ear, in-
ear, and bone-conduction. However, the SAW and LSAW waves
only show up when the user wears a pair of bone conduction
headphones. We suspect that insufficient skin contact or a small
contact surface of on-ear, over-ear, and in-ear headphones are the
primary reason. Additionally, the on-ear and over-ear headphones
are usually equipped with soft earcups or ear pads that can absorb
acoustic energy, further diminishing the generation of these SAW
and LSAW waves.
Taping to the user’s head. Our current prototype requires the
user to tape the microphone to her head for signal reception, which
may not be practical for everyday use. However, we noticed numer-
ous bone conduction earphones have built-in microphones. These
microphones have natural contact with human face, making it pos-
sible to receive SAW and LSAW signals without taping. As these
built-in microphones can come into contact with various positions
on the face, the impact of microphone placement is worth further
exploration.
Extend to Micro-Gestures. The proposed CRNN model can ef-
fectively identify and further categorize ten distinct gestures per-
formed on and above the face. Nevertheless, it encounters chal-
lenges in accurately recognizing micro-gestures involving fine-
grained finger motions, such as scratching the face, pinching the
ear, and sliding the face with two fingers, owing to its constrained
model capacity. One potential remedy is to add more layers to the
current CRNN model to augment its capacity. However, this may
increase the model inference latency, adversely impacting the user
experience. The tradeoff between model capacity and latency is
worth further exploration.

8 CONCLUSION
We have presented the design, implementation, and evaluation of
mobile acoustic field (MAF), a novel acoustic sensing approach that
leverages commodity hardware in bone conduction earphones for
hand-to-face gesture interactions. This new approach hinges on
the principles of Surface Acoustic Waves (SAW) and Leaky Surface
Acoustic Waves (LSAW) to create signals that not only traverse
the user’s facial surface but also radiate into the surrounding air,

forming an encompassing acoustic field surrounding the individ-
ual’s head. Our evaluation involving 22 participants demonstrated
MAF can accurately recognize ten distinct gestures performed both
on face and above face with high precision. The user feedback is
also promising: an overwhelming majority of our 22 interviewees
showcased enthusiasm toward adopting the MAF, anticipating its
seamless integration into contemporary scenarios. We envision that
MAF stands as a significant approach in the field of hand-to-face
gesture recognition technology.
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