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ABSTRACT
This paper tries to answer a question: "Can we achieve
spatial-selective transmission on IoT devices?" A positive
answer would enable more secure data transmission among
IoT devices. The challenge, however, is how to manipulate
signal propagation without relying on beamforming antenna
arrays which are usually unavailable on low-end IoT devices.

We give an affirmative answer by introducing SpotSound,
a novel acoustic communication system that exploits the
diversity of multi-path indoors as a natural beamformer. By
judiciously controlling the way how the information is em-
bedded into the signal, SpotSound can make the signal de-
codable only when this signal propagates along a certain
multipath channel. Since the multipath channel decorrelates
rapidly over the distance between different receivers, Spot-
Sound can ensure the signal is decodable only at the target
position, achieving precise physical isolation. SpotSound is
a purely software-based solution that can run on most IoT
devices where speakers and microphones are widely used.
We implement SpotSound on Raspberry Pi connected with
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COTS microphone and speaker. Experimental results show
that SpotSound achieves a 0.25𝑚2 location isolation.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security.
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IoT Security, Acoustic, DL-based Communication

1 INTRODUCTION
Todaymost wireless transceivers are omnidirectional sources
of electromagnetic waves. Since wireless channel is a broad-
cast medium, wireless transmissions suffer more concerns on
security and privacy [5, 16, 24, 27, 32]. This concern becomes
more serious in the age of the Internet of Things (IoT), where
small and low-cost gadgets continuously monitor our vital
signs and living environment and share them via wireless
channels. Since those low-cost gadgets support only weak en-
cryption or even transmit without encryption [14], their data
packets are vulnerable to eavesdropping attack [20]. More
importantly, even if the wireless network is encrypted, an
eavesdropper can still obtain privacy information by simply
observing features of the wireless signal (e.g., infer a device’s
location based on the received signal strength) [18, 37].
To address this security concern, a potential solution is

leveraging beamforming [15, 23], which ensures the signal
propagates along a certain direction so that the malicious
users at other locations cannot hear it, as shown in Fig. 1
(a). However, beamformer usually faces a critical tradeoff
between cost and control granularity: low-cost directional
antennas form wide beams and thus fail to provide strong
security protection. While, antenna arrays with more so-
phisticated control are costly and bulky, which hinders their
deployment on low-end IoT devices. Programming the radio
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Figure 1: Spatial selective transmission with beamforming and SpotSound.
environment through meta-surface [1, 2, 8, 9, 17], as shown
in Fig. 1(b), would retain a small form factor for IoT devices. It
however comes with even higher infrastructure cost, setting
a strong barrier for pervasive deployment.
This paper presents the design and implementation of

SpotSound, a novel communication system that supports
spatial-selective transmission without relying on bulky and
costly antenna arrays or meta-surfaces (as shown in Fig. 1
(c)). Our idea is to leverage the environment reflectors such
as walls, chairs, and tables as a natural "beamformer". Specif-
ically, a transmitted signal will bounce off reflectors indoors
and superimpose at the receiver. These reflectors form dif-
ferent physical channels that alter signal transmission in
different ways with respect to the receiver’s location. Tak-
ing a step further, for each location, the associated physical
channels essentially form a location-dependent filter. By mod-
ulating the transmission signal in a way that the embedded
information can pass through only the target "filter", we can
achieve spatial selective transmission.

However, no existing modulation algorithm can generate
signals that satisfy the above objective. Conventional modu-
lation algorithms adopt pre-coding to ensure the modulated
signals can be best delivered to the target receiver. However,
these schemes fail to support spatial-selective transmission
because the pre-coded signals can also be demodulated suc-
cessfully at other receiver locations as long as the receiver
maintains a good link condition with the transmitter. So,
to achieve spatial-selective transmission, we need a new
modulator that is able to identify high-level, distinctive char-
acteristics of a target channel, uncover how these hidden
characteristics impact the signal waveform, and modulate
the transmission signal to ensure this signal is decodable
only if it passes through the target channel.

Toward the above target, we propose a novel deep learning-
based modulation algorithm, which learns to generate satis-
fying signals for any given target channel. In this design, the
transmitter is a DL network, which takes as input both the in-
formation need to transmit and a measurement of the target

channel, based on which it generates modulated signals. To
force the transmitter to capture the distinctive characteristics
of the target channel, we propose a conditional GAN (cGAN)
based training model, which involves two discriminators:
a target decoder and a non-target decoder. In the training
process, the two decoders respectively check whether the
generated signal is decodable on the target channel and the
non-target channels. This forces the transmitter to generate
signals in a channel-selective manner. By performing train-
ing with plenty of different channels, the transmitter can
learn a latent mapping from an observed channel to the re-
quired signals. Once the mapping is obtained, the transmitter
can generate a required signal for any indicated channel.
We further embed the above network into a system that

overcomes additional practical challenges, including: i) how
to make SpotSound expressive enough to operate on IoT de-
vices; ii) how to make the model learn to deal with practical
problems such as packet detection, channel selection, toler-
ance of channel measurement error, etc. iii) how to achieve
pre-transmission channel measurement.

We implement SpotSound on Raspberry pi. Since wireless
modules available on IoT devices do not support elaborate
enough signal manipulation, we implement SpotSound on
acoustic channels using the COTS speaker and microphone.
We evaluate its performance in different environments and
under different configurations. The results show that Spot-
Sound can always make precise control of signal’s coverage,
achieving simultaneous transmission secrecy and reliability.

This paper makes the following contributions:

• We for the first time explore the feasibility of achieving
spatial-selective transmission by leveraging the spatial-
specific channel effect as a natural "beamformer".

• We reveal that deep learning is a particularly good fit to
optimize the PHY-layer of wireless communication for ob-
jectives that are difficult to achieve with hand-crafted mod-
ulation algorithms (e.g., spatial-selective transmission).

• We implement SpotSound on low-end devices and show
its ability to focus its signal in a less than 0.25𝑚2 spot.
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Figure 2: Multipath reflection.
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Figure 3: CIR measured in different environments.

2 THREAT MODEL
In our target scenario, the attacker is a malicious receiver
(EVE) which tries to eavesdrop on the communication be-
tween legitimate transceivers (Alice and Bob). SpotSound’s
target is to ensure reliable communications between Alice
and Bob, making the signal received at EVE resemble noise.
We do not assume Bob’s any advantages over EVE on ei-

ther prior knowledge, hardware, algorithm, or channel qual-
ity. Specifically, we assume that EVE has complete knowledge
of: i) the communication medium between Alice and Bob
(i.e., acoustic); ii) the frequency band for the communication;
and even iii) the modulation and demodulation models used
by Alice and Bob, based on which it can train an attacking
model to decode the signals from Alice.

We also assume that EVE is not staying in the same place
with Bob (e.g., their spacing is larger than a certain distance,
say > 50 cm). This assumption holds in practice since EVE
will be exposed if she stays close to Bob. Besides, we also
assume EVE is a powerful device that can: i) eavesdrop on
any communications between Alice and Bob at any location;
ii) record any signal in high fidelity; and iii) process the signal
with any advanced signal processing techniques (e.g., train
a strong DL network to decode Alice’s signal).

3 BACKGROUND AND INTUITION
3.1 Signal’s channel behavior
In an indoor environment, signals transmitted from a trans-
mitter are usually reflected by multiple surrounding objects,
which cause them to traverse different, say 𝑃 , propagation
paths before reconvening at the receiver (as shown in Fig.
2). Each path 𝑝 will cause an attenuation in signal strength,
denoted as 𝛼 (𝑝). If we denote the transmitted signal as 𝑠 (𝑡),
then the received signal 𝑟 (𝑡) can be expressed as:

𝑟 (𝑡) =
𝑃∑︁

𝑝=1
𝛼 (𝑝) · 𝑠 (𝑡 − 𝑑𝑝 ) +𝑤 (𝑡) (1)

where 𝑑𝑝 is the time delay of the 𝑝𝑡ℎ path, and 𝑤 (𝑡) is the
channel perturbation caused by device distortion and am-
bient noise. The received signal 𝑟 (𝑡) can be also written as
the temporal convolution of transmitted signal 𝑠 (𝑡) and the
channel impulse response (CIR) ℎ(𝑡):

𝑟 (𝑡) = ℎ(𝑡) ⊗ 𝑠 (𝑡) +𝑤 (𝑡) (2)

where, ℎ(𝑡) denotes the amplitude of the multipath signal
with the delay of 𝑡 .

Due to the signal’s diverse propagation paths indoors,
signals received at different locations will experience quite
different channel effects (as shown in Fig. 2). Fig. 3 illustrates
the extent of channel diversity measured in a living room.
Specifically, we place a speaker at the top left corner of the
room and place a microphone at 45 different locations in
the room. We measure the CIR on each location and Fig.
3(b) illustrates the CIRs measured on 8 different locations.
As can be seen, the 8 CIRs are quite different in both time
distribution and amplitude. We further calculate the correla-
tion coefficient between the CIRs measured on a reference
location (as marked in Fig. 3(a)) and every other location. Fig.
3(a) visualizes the correlation coefficient of each location.
We can see that the CIR varies significantly across locations,
and decorrelates quickly with distance. When the distance
is >1m, the CIR correlation decreases to less than 0.4.

3.2 Beamforming
Equation (2) tells that the quality of the received signal is
highly determined by the channel it propagates through.
Thus, to achieve spatial-selective transmission, a straightfor-
ward method is to directly control the signal’s propagation
behavior, making the signal propagates along a certain direc-
tion. There are two typical ways to achieve this target. The
first way is to deploy an antenna array on the transmitter and
uses the beamforming technique to steer the signal’s trans-
mission direction, as shown in Fig. 1 (a). The second way is
to instead deploy a large array of phase shifters (also known
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Figure 5: Featuremap ofmodulation signals:
(a) signal generated by Alice; (b) signal received
by Bob; (c) signal received by Carol.

as a meta-surface) in the environment, as shown in Fig. 1
(b). By dynamically shifting the phase of the wireless sig-
nal propagating through it, the meta-surface can adaptively
configure the channel that the signal propagates through.

However, a problem underlying both methods is that they
need to make a difficult tradeoff between cost and control
granularity. Specifically, sophisticated control of signal prop-
agation typically requires a large number of signal control
elements (e.g., antennas or phase shifters). This makes an-
tenna arrays prohibitively bulky and expensive, and are thus
unavailable on IoT devices. An alternative is to use meta-
surfaces to offload this burden to the environment. However,
this method comes with even higher infrastructure costs,
setting a strong barrier to pervasive deployment.

3.3 Physical channel as a beamformer
We in this paper propose a new approach which achieves
spatial-selective transmission by leveraging the environment
as a natural beamformer. Specifically, due to the signal’s di-
verse propagation paths indoors, we can actually consider the
channel effect as a location-dependent filter for the transmit-
ted signal. Signals that propagate toward different locations
can be considered as if passing through different filters. So,
if the transmitter can predict the signal’s transformation
on the target channel and elaborately modulate the signal
in a way that the embedded information can pass through
only the filter of that channel, it can achieve spatial-selective
transmission.

This new form of "beamforming" provides two benefits:

• It achieves spatial selective transmission by controlling
the signal itself, which is much easier to control with high
granularity, compare with its propagation behavior.

• Since the channel effect decorrelates rapidly to the distance
between two receivers, such an environment-based beam-
former can concentrate the signal to a small spot rather
than a beam, achieving more precise physical isolation.

However, manually designing a signal modulation algo-
rithm that dynamically generates signals targeting a given
channel is an intractable task. It requires the modulator to
first identify the distinctive channel characteristics of the

target channel, then model how these characteristics in turn
determine the features of the required signal, and based on
which perform an elaboratemanipulation of the transmission
signal, making the signal matches only the target channel.
We deal with this complexity with deep learning (DL).

Specifically, we borrow the idea from cGAN (conditional
GAN) [19], a DL framework which has shown great success
in generating an image based on a text description of the
image. A cGAN model involves a generator that generates
images based on the descriptions and a discriminator that
tries to identify whether the generated image matches the
description. In the training process of cGAN, the generator
is optimized to fool the adversarially-trained discriminator
into identifying the generated images as satisfying. In this
way, the discriminator can guide the generator to capture
the visual characteristics contained in the text description
and based on which generates corresponding images.
Inspired by cGAN, we propose a novel deep learning-

based modulation algorithm, which learns to generate sat-
isfying signals for any target channel, as shown in Fig. 4.
Our DL module also has a generator (i.e., the transmitter
Alice), which takes as input both the data bits and a mea-
surement of the target channel and generates the modulated
signals. Since the generated signals need to satisfy two ob-
jectives simultaneously, i.e., decodable on the target channel
and undetectable on other channels, we use two discrimina-
tors, which act as the target receiver (denote as Bob) and a
non-target receiver (denoted as Carol). These two discrimi-
nators respectively check whether the transmitted signal is
decodable on the target channel and other channels. In this
way, they can cooperatively guide the generator to generate
signals that satisfy the two objectives simultaneously.

The DL network of SpotSound achieves the above objects
through an adversarial training process. Specifically, in our
design, Carol’s goal is to recover the bits embedded in the
signal accurately. Alice and Bob try their best to hide their
communication from Carol, and at the same time, boost the
performance of their own communication. By maximizing
the decoding rate of Bob while minimizing that of Carol, Bob,
and Carol can guide Alice through backpropagation to learn
the following two things:
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• An attribute representation of the channel which captures
distinctive channel information for signal modulation.

• A latent mapping from the channel information to the
modulation signals targeting that channel.

We in Fig. 5 provide a visualization of how Alice achieves
spatial-selective transmission. In this case, Alice generates
8 different symbols, which are represented by acoustic sig-
nals with different features. Fig. 5 shows the feature maps
(which are compressed to a spherical surface) of the gener-
ated signals, where points with the same color represent the
same symbol. Figs. 5 (a)-(c) respectively shows the feature
maps of the original signals, signals received on the target
channel, and signals received on a non-target channel. As
can be seen, the signal form 8 non-overlapping clusters only
after it passes through the target channel. This indicates that
Alice can embed information into channel-selective features
of a signal, making the information detectable only after the
signal passes through the target channel. So an eavesdropper
cannot decode the signal even if it can directly obtain the
original signal (i.e., the one in Fig. 5 (a)).

We make two important remarks on the above model:

• Our model can be generalized to unseen channels.
Given an arbitrary channel measurement, our model pre-
processes the transmission signals so that these signals are
only decodable on that specific channel. Note that the key
to the pre-processing is the features of the channel which
particularly capture the distinctiveness between receivers’
locations, but not all the details of the CIR measurements
(which may related to other factors such as device noise
and ambient interference). Hence the model does not need
to see all the physical environments or channels to gen-
eralize. Instead, it only needs to: i) find out the channel
features that really related to the pre-processing process;
and ii) learn a mapping between the channel features and
the pre-processing operations.

• Our model can defend unseen eavesdroppers. Specifi-
cally, we do not assume that the eavesdropper will use the
same network model as the decoder modules. The role of
both Bob and Carol is simply a discriminator which guides
Alice to generate signals for an indicated channel. We will
show in Secs. 7 and 6 that signals received on a non-target
channel resemble noises (e.g., as in Fig. 5 (c)), which can
i) pass the randomness test; and ii) fool an unseen neural
network that is much stronger than Bob and Carol.

4 SPOTSOUND’S DL MODEL
4.1 Organization and Objectives
Organization. Fig. 6 shows the overall architecture of the
model, which involves three parties: Alice, Bob, and Carol. All
of them are neural networks, whose parameters are denoted

as 𝜃A, 𝜃B and 𝜃C. In our design, Bob and Carol share the same
structure but have different parameters.

Alice takes as inputs the data information𝑋 , CIR of the tar-
get channel ℎ̂𝐵 , and a random noise signal 𝑆𝑅 . It embeds the
information 𝑋 in the noise signal 𝑆𝑅 and outputs the modu-
lation signal 𝑆 . Specifically, it encodes 4 bits into one symbol
and each symbol 𝑥𝑖 is represented as a 16-dimensional one-
hot vector. It concatenates 𝑥𝑖 with a 300-sample noise signal
𝑠𝑖
𝑅
and produces a 600-sample modulation signal 𝑠𝑖 . This

means a 320 bps bitrate when the microphone’s sampling
rate is 48KHz. Considering that the multipath effect will
create interference between adjacent symbols, to take such
inter-symbol interference into consideration, Alice takes as
input the whole packet 𝑋 = {𝑥1, ..., 𝑥𝑀 } and outputs the
modulated signal 𝑆 = {𝑠1, ..., 𝑠𝑀 }. We set 𝑀 = 10 in our im-
plementation, which is sufficient to capture the inter-symbol
interference considering that the delay spread of the multi-
path signal is usually less than 0.1s (8-symbol length) [4].

The signal 𝑆 is then transmitted to Bob and Carol through
the channels ℎ𝐵 and ℎ𝐶 . The signal received on these two
receivers are represented as 𝑅𝐵 = 𝑆 ⊗ ℎ𝐵 + 𝑤𝐵 and 𝑅𝐶 =

𝑆 ⊗ ℎ𝐶 +𝑤𝐶 , respectively. After receiving the signals, Bob
and Carol process the signals to recover the data 𝑋 . We
represent what they obtained by 𝑋𝐵 and 𝑋𝐶 , respectively.

Objectives. The objectives of the three parties are as fol-
lows. Carol’s goal is to minimize the error between 𝑋 and
𝑋𝐶 . Alice and Bob try to minimize the error between 𝑋 and
𝑋𝐵 but also hide their communication from Carol.

We denote Alice’s output on data 𝑋 and random noise 𝑆𝑅
as 𝑓𝐴 (𝜃𝐴, 𝑋, 𝑆𝑅), and denote Bob’s and Carol’s outputs on
signal 𝑅𝐵 , 𝑅𝐶 as 𝑓𝐵 (𝜃𝐵, 𝑅𝐵) and 𝑓𝐶 (𝜃𝐶 , 𝑅𝐶 ), respectively. We
use L1 distance to measure the error in data bit recovery as
𝑑 (𝑋,𝑋•) =

∑ |𝑋 (𝑖) − 𝑋• (𝑖) | (where 𝑋• ∈ {𝑋𝐵, 𝑋𝐶 }). Then
the loss function for Carol can be expressed as:

𝐿𝐶 (𝜃𝐴, 𝜃𝐶 ) = 𝑑 (𝑋, 𝑓𝐶 (𝜃𝐶 , 𝑓𝐴 (𝜃𝐴, 𝑋, 𝑆𝑅) ⊗ ℎ𝐶 +𝑤𝐶 )) (3)

Then we obtain the "optimal Carol" by minimizing this loss:

𝑂𝐶 (𝜃𝐴) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐶𝐿𝐶 (𝜃𝐴, 𝜃𝐶 ) (4)

Similarly, we obtain the loss function for Bob as:

𝐿𝐵 (𝜃𝐴, 𝜃𝐵) = 𝑑 (𝑋, 𝑓𝐵 (𝜃𝐵, 𝑓𝐴 (𝜃𝐴, 𝑋, 𝑆𝑅) ⊗ ℎ𝐵 +𝑤𝐵)) (5)

We define a loss function for the whole system by combining
𝐿𝐵 and the optimal value of 𝐿𝐶 :

𝐿(𝜃𝐴, 𝜃𝐵) = 𝐿𝐵 (𝜃𝐴, 𝜃𝐵) − 𝐿𝐶 (𝜃𝐴,𝑂𝐶 (𝜃𝐴)) (6)

By minimizing the above loss function, SpotSound can min-
imize Bob’s decoding error and meanwhile maximize the
decoding error of the "optimal Carol".
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Figure 6: Architecture of SpotSound’s DL model.

4.2 Design details
Now we introduce the design details of SpotSound’s DL
model that achieves the above target.

4.2.1 Signal generator. Given the data 𝑋 , the target channel
ℎ𝐵 , and a random noise 𝑆𝑅 , Alice’s task is to find a function
𝑓𝐴 that generates the modulation signal by embedding 𝑋

into 𝑆𝑅 in a way that the information is decodable only on
channel ℎ𝐵 . Towards this goal, we decompose the generator
into the following three sub-modules (as shown in Fig. 6):
• The channel characterization module, which captures dis-
tinctive channel characteristics contained in ℎ̂𝐵 with fully-
connected (FC) layers. The extracted information 𝜑𝐵 is
then used for signal generation.

• The data embedding module, which embeds the data infor-
mation𝑋 into the random noise 𝑆𝑅 with a deconvolutional
network. It discovers channel-sensitive features of a signal,
and embeds the information 𝑋 onto those features, so that
the produced signal 𝑆 ′ (especially the embedded informa-
tion) is detectable only on a small proportion of channels.
This is analogous to forming a narrow beam which can
focus the signal only on a small area.

• The signal transformation module, which is a transforma-
tion network that applies a transform to 𝑆 ′ conditioned by
𝜑𝐵 [25]. This makes the final output signal 𝑆 perfectly and
exclusively fits the target channel ℎ𝐵 . This is analogous to
steering the beam to the target position.
Note that although we decompose the transmitter into

three sub-modules, we still consider them as a whole in the
training process and optimize each sub-module in a way that
all the module can jointly achieve the best end-to-end perfor-
mance. So that the target of each sub-module can be achieved
through back-propagation during the training process.

4.2.2 Discriminator. On the receiver side, the received signal
is first sliced into symbols (as shown in Fig. 6), then each
symbol is processed by the receiver. The core of the receiver
is a CNN-based classifier which infers the transmitted data
𝑋 based on the received signal (i.e., 𝑟𝐵 or 𝑟𝐶 ).

4.2.3 Frequency selection. To make the modulated signal
inaudible to human ears, the transmitter should transmit the
signal only on the inaudible bandwidth (i.e., 17∼20KHz). But
how to make Alice learn to modulate the information only
on those frequencies? To achieve this, we in the training pro-
cess add a band-pass filter to the output of the transmitter
(as shown in Fig. 6). Only the signals on 17∼ 20KHz band can
finally arrive at the receiver side. This forces the transmitter
to modulate the signal only on these bands. Note that fre-
quency selection is integrated into the end-to-end learning
process without any explicit module in the transmitter or
any additional loss term in Eq. (6).

4.3 Model compression
We in this section compress our DL model to make sure that
SpotSound is expressive enough to support real-time pro-
cessing with limited memory and computational resources.
The complexity of our model mainly comes from the FC

layers and the convolution layers. In our design, FC layers
are used to capture the long-range dependencies of the signal
caused by the multipath effect, which cannot be captured
by convolution layers, and convolution layers are used to
extract features. However, the use of FC layers exponentially
increases the parameter size and thus the memory cost. Al-
though the convolution layer uses much fewer parameters
than the FC layer, it still incurs high computation costs.

We reduce the model’s complexity with three techniques.
First, we use low-rank approximation (LRA) technique to find
a compact representation of the parameter set on the FC lay-
ers, with limited loss of information. With this technique, we
reduce the parameter size of each FC layer by 62%. Second,
we replace the standard convolution layers with depthwise
separable convolution (DSC) layers, which factorize a stan-
dard convolution into a depthwise convolution and a 1×1
convolution called pointwise convolution. By using DSC
layers, we can reduce the computation cost by about 85%,
with only a small performance degradation. Last, we adopt
filter pruning to further compress the model. Specifically, we
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Table 1: Memory and computation cost of the models.

Model Description Memory Computation Energy

I LRA+DSC+
pruning 188,467 22.16 MFLOPS 1.06×10−4 𝐽

II LRA+DSC 549,795 26.71 MFLOPS 1.29×10−4 𝐽
III DSC 1,234,743 100.84 MFLOPS 4.89×10−4 𝐽

Table 2: The memory size and FLOPs supported by
typical IoT devices.

Hardware Memory Size MFLOPs
STM32F412 262,144 33
STM32F743 524,288 158.4
Intel Edison 1,073,741,824 4000

Raspberry Pi 4 Model B 8,589,934,592 12288
Qualcomm Snapdragon 800 >268,435,456 18841.6

Nvidia Tegra K1 >268,435,456 18841.6
pixel 1 8,589,934,592 18841.6

calculated the L1-norm of weights in each FC and CNN layer
and preserved those with the largest L1-norm.
Based on the above techniques, we have proposed three

versions of models, each compressed with a different com-
pression strategy. Table 1 shows the memory cost (i.e, param-
eter size) and computation cost (i.e, floating point operations,
FLOPs) of each model. We also show in Table 2 the maximum
supportable memory size and FLOPs of 7 typical IoT devices.
As can be seen, the most lightweight version (Model I) is suit-
able for all IoT devices. We have also tested the performance
of the three models in Sec. 6.3. The results show that Model I
incurs only a slight performance degradation compared with
the other two models.
We further analyse the energy consumption of the pro-

posed models. Specifically, the power footprint of a model is
proportional to the multiply-add operations and the amount
of data that need to be loaded from DRAM, which can be
expressed as follows:

𝐸 = (𝑁𝑚𝑢𝑙−𝑎𝑑𝑑 · (𝐸𝑚𝑢𝑙 + 𝐸𝑎𝑑𝑑 ) + 𝑁𝑖𝑛 · 𝐸𝑟𝑎𝑚) (7)

where 𝑁𝑚𝑢𝑙−𝑎𝑑𝑑 is the number of 32-bit-float multiply-add
operations associated with the model; 𝐸𝑚𝑢𝑙 and 𝐸𝑎𝑑𝑑 are the
energy consumption of performing one multiplication and
one 32-bit-float-addition, respectively. 𝑁𝑖𝑛 is the input length
of the model and 𝐸𝑟𝑎𝑚 is the energy consumption of loading
a 32-bit float from DRAM.
Reference [12] shows the power footprint of the above

arithmetic and memory operations on a 45nm CMOS process.
Based on Eq. (7) and the results shown in [12], we estimate
the energy consumption of our three models in generating
one 60-bit packet. The results are shown in Table 1. As can

be seen, the energy consumption of SpotSound keeps lower
than 1mJ, which is affordable on most IoT devices.

4.4 Training strategy
Dataset. To ensure that the model could learn the latent map-
ping between the channel information and the modulated
signal, we train the model with CIR measurements collected
in different environments.
• Diversity. Our CIR measurements are collected from 12
different indoor environments on a university campus,
including seminar rooms, cafeteria, offices, and dorms.

• Scale. In each environment, we put a pair of transceivers
(denoted as A and B) on 40∼90 pairs of different locations
and for each pair of locations we collect more than 600 CIR
measurements, where 300 measurements for the A-to-B
channel, and the other 300 measurements for the B-to-A
channel (we will explain in Sec. 5.1.1 that why we require
the CIR on both directions). We in total collected more
than 430,000 CIR measurements for training.
Training. In practice, Alice cannot perfectly estimate the

target channel. Thus, we should involve this error in the
training process so that Alice and Bob can learn to tolerate
this error. To achieve this, we find out CIRs measured on the
same location while at different times and directions, and use
them respectively as Alice’s input and Bob’s channel layer.
Due to the errors in channel estimation, those CIRs have
only 0.8∼0.9 similarity, which forces Alice and Bob to handle
the imperfect channel estimation. We train the model with
different combinations of ℎ𝐵 and ℎ𝐶 . The training examples
also include the cases where Carol can directly obtain the
source signal (i.e., ℎ𝐶 = 1).

In the training process, we alternate the training of Alice
and Bob with that of Carol. The training may for example
proceed as follows. Alice may initially produce signals that
neither Bob nor Carol can decode. By training for a few
steps, Alice and Bob may discover a way to communicate
that allows Bob to decode Alice’s signal, but which is not
understood by (the present version of) Carol. In particular,
Alice and Bob may discover some trivial ways to hide the
information. After a bit of training, however, Carol may start
to break this "code". With some more training, Alice and
Bob may discover refinements, in particular, some ways that
exploit the channel diversity better for information hiding.
Carol eventually finds it impossible to decode the signal.

5 SPOTSOUND IN PRACTICE
With only the core DL model introduced in Sec. 4, SpotSound
cannot work in practice because of two unsolved issues: i)
pre-transmission channel estimation; and ii) package de-
tection. This section presents the design enhancement for
SpotSound, in order to solve these two issues.
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Figure 7: Channel reciprocity.

5.1 Channel estimation
To estimate the channel (i.e., the CIR), a common practice [7,
29, 34] is to send a known training signal 𝑠𝑇 . Then, CIR
can be derived from the deconvolution of received signal 𝑠 ′

𝑇

and transmitted training signal 𝑠𝑇 . Since the calculation of
convolution is nontrivial, the common trick to derive CIR is
to convert temporal convolution into multiplication in the
frequency domain, followed by an inverse Fourier transform:

ℎ̂ = ℑ−1{𝑆∗𝑇𝑆 ′𝑇 } (8)

where ℑ−1 denotes the inverse Fourier transform. 𝑆 ′
𝑇
is the

Fourier transform of the received signal 𝑠 ′
𝑇
. 𝑆∗

𝑇
is the complex

conjugate of 𝑠𝑇 .
However, there are two challenges in applying this chan-

nel estimation design. First, in our case, the task of channel
estimation is shifted to the transmitter (i.e., Alice). How can
Alice know the channel prior to transmission? Second, trans-
mitting a known signal will expose the transmission process
to an eavesdropper. How to make the channel estimation
imperceptible to eavesdroppers? We introduce how we solve
these problems in the following of this section.

5.1.1 Achieving pre-transmission channel estimation. Weper-
form pre-transmission channel estimation with channel reci-
procity – the property that the channel from a node, say
Alice, to another node, say Bob, is the same as the channel
from Bob to Alice. To validate channel reciprocity on the
acoustic channel, we perform an experiment with three de-
vices: Alice, Bob, and Carol. In the experiment, we keep the
Alice-to-Bob distance at 2m and the Carol-to-Bob distance
at 1m. We measure the Alice-to-Bob channel ℎ𝐴𝐵 , the Bob-
to-Alice channel ℎ𝐵𝐴, and Alice-to-Carol channel ℎ𝐴𝐶 , and
show the results in Fig. 7 (a). As can be seen, ℎ𝐴𝐵 and ℎ𝐵𝐴
are very similar while are significantly different from ℎ𝐴𝐶 .
We further repeat the above experiments in 12 different

environments, and in each environment we collect more than
100 CIRs for each channel. We calculate the pearson corre-
lation coefficient between each pair of CIRs, including that
between two reciprocal channels (𝐶𝑜𝑟 (ℎ𝐴𝐵, ℎ𝐵𝐴)), the same
channel measured at different times (𝐶𝑜𝑟 (ℎ𝐴𝐵, ℎ𝐴𝐵)), and two
different channels (𝐶𝑜𝑟 (ℎ𝐴𝐵, ℎ𝐴𝐶 )). The results in Fig. 7(b)
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Figure 8: Packet detection. (a) moving the window sample
by sample; (b) moving the window with a long step

show that the 𝐶𝑜𝑟 (ℎ𝐴𝐵, ℎ𝐵𝐴) is only 3% lower than that of
𝐶𝑜𝑟 (ℎ𝐴𝐵, ℎ𝐴𝐵), while is 2× higher than that of𝐶𝑜𝑟 (ℎ𝐴𝐵, ℎ𝐴𝐶 ).

Based on this phenomenon, Alice can estimate the Alice-
to-Bob channel based on Bob’s responses. Note that since
such a reversed channel estimation brings additional errors
in CIR measurement, we involve this error in the training
process by using reciprocal CIR measures on Alice’s input
layer and Bob’s channel layers, as mentioned in Sec. 4.2.

5.1.2 Making channel estimation imperceptible. To make the
channel estimation imperceptible to an eavesdropper, we
use random noise as pilot signal. In our design, each two
transceivers Alice and Bob maintain two white noise signals,
denoted as 𝑠 (𝑟𝑒𝑞)

𝑇
and 𝑠

(𝑎𝑐𝑘)
𝑇

. These two noise sequence is
known only by Alice and Bob. When Alice wants to predict
the Alice-to-Bob channel, it first broadcasts a request 𝑠 (𝑟𝑒𝑞)

𝑇
.

Bob detects this request by cross-correlation between the
received signal and the template 𝑠 (𝑟𝑒𝑞)

𝑇
. After detecting this

request, Bob responses an ACK 𝑠
(𝑎𝑐𝑘)
𝑇

to Alice, based on
which Alice can measure the Alice-to-Bob channel. Since
both 𝑠 (𝑟𝑒𝑞)

𝑇
and 𝑠 (𝑎𝑐𝑘)

𝑇
are noise-like signal, the eavesdropper

can hardly distinguish them from the noise and thus can
hardly detect the communication between Alice and Bob.

The two noise sequences 𝑠 (𝑟𝑒𝑞)
𝑇

and 𝑠 (𝑎𝑐𝑘)
𝑇

shared between
two devices can be initialized either manually or leveraging
the existing automatic pairing methods for IoT devices [21,
30]. To prevent the EVEs from learning the two sequences
by sampling the channel over a long time, Alice and Bob also
update the two sequences periodically. Specifically, they can
use the old sequences as seeds to generate new sequences
with a hash function. The hash function can be a public
function which is known by EVE.
Note that we do not need to perform the above channel

estimation process for every transmission. It can be triggered
periodically. Our experiments in 6.4 tells that a low-frequent
channel re-estimation (e.g., every 10 min) is sufficient for
SpotSound to achieve a decent performance in highly dy-
namic environment.
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5.2 Package detection
In a practical communication system, Alice has to transmit
a known preamble signal at the beginning of each packet
[13, 35], so that Bob can localize the start of a packet and then
slices the packet into symbols (i.e., 600-sample segments) for
further demodulation. This is however infeasible in our case
since repeatedly transmitting any definite signal (even a
noise-like signal as those used in channel estimation) can
leave an eavesdropper detecting the signal by performing
self-correlation. So, we need a method to detect the start of
a packet without a preamble.
To achieve this, we design a NN module for packet de-

tection, which can distinguish the modulated signals from
noises. Specifically, the receiver first samples the signal with
a moving window, and then feeds the signal in each window
to the packet detection module. The module then determines
whether the window contains modulated signal. One way
to train this model is to label the training signals that con-
tain a complete symbol as positive and those that contain
only ambient noises as negative. However, in this way the
receiver can detect the modulated signal only when the win-
dow aligns tightly on one symbol, as shown in Fig. 8 (a). So,
to detect the modulated signal, the decoder has to move the
window sample by sample, which leads to a high detection
delay.
To solve this problem, we propose to train a module that

can detect the modulated signal once the window intersects
with a symbol, as shown in Fig. 8 (b). In this way, the receiver
can locate the start of the packet in a coarse-to-fine manner.
Specifically, we first move the window with a longer step,
as shown in Fig. 8 (b). Once a symbol is detected, it further
moves the window with a finer granularity (e.g., sample by
sample) to finally locate the start of the packet with the
decoder module. In the training process, we assign a binary
label to eachwindow to indicate whether it contains a symbol
or not. A window that overlaps more than 40% with a symbol
is set as positive. Note that the packet detector module is
trained independently and is not involved in the end-to-end
training of SpotSound’s DL model.

6 EVALUATION
6.1 Experimental Methodology
Implementation. We implement SpotSound on Raspberry
pi 4 Model B with the help of TensorFlow lite. The sound
is played with the EDIFIER R1200TII speaker and the Tak-
Star TCM-400 microphone which are both connected to the
UGREEN external sound card. The frequency range and the
sampling rate of the sound are set at 17-20 kHz and 48 kHz
respectively.
we select Model I in Table 1 as the default implementa-

tion and compare all the three versions of SpotSound model
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Figure 9: Experiment settings.

in Sec. 6.3. We have also trained a normal EVE and two
strengthened EVEs. We use the normal one which shares the
same structure with Bob as the default implementation of
EVE. The strengthened version ① uses convolution layers
with four times as many feature channels as Bob and the
strengthened version ② replaces the first two convolution
layers of version ① with FC layers. In Sec. 6.6 we evaluate
SpotSound’s performance in resisting all three EVEs. Note
that EVE and Carol play different roles in our design. Carol
acts as a discriminator in the cGAN model while EVE is the
attack model. Carol guides Alice to run information hiding.

Experimental setup. The experiments are performed in
two different environments: i) an apartment, which has four
different rooms, i.e., a 7m×3.8m living room, a 3.3m×2.6m
study room, a 3.8m×1.7m enclosed balcony, and a 4.2m×1.8m
kitchen; ii) three different office rooms with different sizes.
Fig. 9 shows the floor map for the experiment scenes. Note
that all of the testing environments are unseen by Spot-
Sound in the training process. The experiments are per-
formed in both static and dynamic scenarios. In dynamic
scenarios, users are allowed to move around the testing area.
Metrics. We test SpotSound’s performance in terms of

transmission secrecy and reliability, which are evaluated
with the Bit Error Rate (BER) of EVE and Bob, respectively.
SpotSound aims to minimize the BER on Bob, meanwhile,
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Figure 10: Overall performance. (a-1)∼(a-5) shows EVE’s
BER tested in the living room when Bob is put at different
locations; (a-6) shows Bob’s BER tested in the living room.
Fig. (b-1)∼(b-3) shows EVE’s BER tested in the study room.

maximize that on EVE.We also evaluate SpotSound’s through-
put in Sec. 6.5.

6.2 Overall Performance
We start by examining SpotSound’s ability in concentrating
the signal on a target area. In the experiment, we deploy
Alice in the top right corner of a living room and deploy Bob
on five different locations in the room, as marked in Fig. 9.
At each location, we let Alice transmit signals to Bob in a
spatial-selective manner, during which we put EVE on 45
different locations in the environment, and observe whether
EVE can decode the transmission between Alice and Bob.

Fig. 10(a-1)∼(a-5) shows BER of EVE obtained on different
locations. A darker color in the heatmap means a lower BER.
As can be seen, in most cases, SpotSound can precisely
focus the signal in a less than 0.5m×0.5m spot −− EVE’s
BER keeps higher than 40% as long as it locates 0.5m far
away from Bob. EVE cannot decode Alice’s signal even in
the case where it locates next to Alice.
However, we can also observe that SpotSound’s signal

control precision slightly decreases when Bob locates quite
close to Alice, (see Fig. 10(a-5)). This is because SpotSound’s
spatial-selective transmission needs the support of the mul-
tipath environment. When both EVE and Bob locate close to
Alice, the difference between their channels becomes mar-
ginal, which leads to the slight spread of the signal spot, as
shown in Fig.10(a-5). As a comparison, we also put Bob in
the 45 positions and observe Bob’s BER. Fig. 10(a-6) shows
that since Alice can always concentrate its signal to Bob’s
location, Bob can always achieve a lower than 1% BER.
We further repeat the above experiment in a multipath-

rich study room. In this experiment, we tested EVE’s BER
on 35 different locations in a 1.6×2.8 area. Fig. 10(b-1)∼(b-3)
shows the result obtained on three different locations of Bob.

As expected, SpotSound can focus the signal on a < 0.4× 0.4
area in multipath-rich environments.

6.3 Impact of model complexity
We in this section compare the performance of the three
models shown in Table 1. Specifically, we repeat the exper-
iments in Sec. 6.2 with model II and III. Fig. 11 shows the
performance of all three models. In the figure, we do not
observe an obvious performance gap between Model I and
the other two models, although its size is reduced by 74.7%,
compared with Model III. The average BER on Bob achieved
by Model I is only 0.6% higher than that achieved by model
III. So, we use Model I as the default model in SpotSound.

6.4 Impact of practical factors
6.4.1 Direction. We first evaluate the impact of the signal’s
propagation direction. We perform two groups of experi-
ments. In the first group of experiments, we vary the angle
between Alice and Bob from -180◦ to 180◦, with a step of 10◦,
during which we fix the Alice-to-Bob distance at 1m.Wemea-
sure Bob’s BER on different angles and the results are shown
in Fig. 12 (right). As can be seen, Bob’s BER keeps lower
than 1% when the angle changes from -60◦ to 60◦. When the
angle increases to ±90◦, the BER begins to increase. However,
although in the case where Bob locates behind the speaker
(i.e., at ±180◦), Bob’s BER is still lower than 3.5%.

We further evaluate EVE’s performance. During the exper-
iment, we fix both the Alice-to-EVE distance and Bob-to-EVE
distance at 1m, and change the angle between Alice and EVE
from -180◦ to 180◦ by changing Alice’s orientation. We let
Alice concentrate its transmission to Bob, and observe EVE’s
BER from different angles. The results in Fig. 12 (left) show
that BER keeps higher than 45% in all directions.

6.4.2 Distance. Then we evaluate the impact of signal prop-
agation distance. We first evaluate Bob’s performance under
different Alice-to-Bob distances. Specifically, we vary the
distance from 1m to 6m in the living room. On each distance,
we test Bob’s BER under three different angles, i.e., 0◦, 90◦,
and 180◦. The results are shown in Fig. 13. We can see that
the impact of distance is not so obvious as that of orientation.
On a certain orientation, we do not observe an apparent
change in Bob’s BER under different distances.
We further evaluate EVE’s performance under different

Alice-to-EVE distances and different Bob-to-EVE distances.
Figs. 14 (a)-(c) show the results obtained under different
orientations of Alice.We can see that EVE’s BER keeps higher
than 40% in all cases.

6.4.3 Environments. To evaluate SpotSound’s performance
in different environments, we perform experiments in 7 test-
ing sites shown in Fig. 9. In each experiment, we fix the
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Figure 15: Performance under environments with dif-
ferent clutter levels and dynamic levels.

location of Alice and put Bob at 3 different locations. When
Alice transmits signals to Bob, EVE tries to decode the sig-
nal at 3 randomly selected locations. Fig. 15 (a) shows the
BER obtained by Bob and EVE in different environments. As
expected, SpotSound achieves higher secrecy while lower
reliability in multipath-denser environments. For example,
in average the EVE’s BER obtained in a cluttered kitchen is
2.3% higher than that obtained in the living room.

We further test SpotSound’s performance in dynamic sce-
narios, where users are allowed to move around the testing
areas and the locations of the furniture (e.g., the chair) can
also change. We tested two kinds of dynamic scenarios: i)
moderate dynamics where the moving objects will not dis-
turb the LoS channel between Alice and Bob; and ii) intensive
dynamicswhere themoving objects will disturb the LoS chan-
nel. In each scenario, we observe SpotSound’s performance

Bob

EVE

Figure 16: Performance
with different devices.

Bob

EVE

Figure 17: Performance un-
der different bitrates.

obtained with different channel estimation frequencies. The
results are shown in Fig. 15 (b).
As can be seen, SpotSound can still achieve a lower than

5% BER in moderate dynamics even when the channel es-
timation period increases to 25 min. This is because that,
compared to the large reflectors in the environment (e.g., the
walls and the large furniture), the moving people and the
chairs have only marginal effect to the channel. Such small
changes in the CIR measurement are considered in the train-
ing process, as we have discussed in Sec. 4.4. However, when
working at a intensively dynamic environment, SpotSound
has to re-estimate the channel every 5 min to keep its BER
lower than 5%. The above results tell that we should provide
an adaptive channel estimation method which can increase
the channel estimation frequency automatically in dynamic
environments. We leave this to our future work.
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Figure 18: Performance in resisting different EVEs.

6.4.4 Device diversity. In this section, we evaluate Spot-
Sound’s transmission reliability when Alice and Bob use
different types of microphones and speakers. We tested two
types of microphones (TakStar TCM-400 (M1) and LATZZ
A3 (M2)) and two types of speakers (EDIFIER R1200TII (S1)
and Swan M200MKIII (S2)). The performance achieved with
different pairs of speaker and microphone are shown in Fig.
16. As can be seen, the type of the device does not have
apparent impact on SpotSound’s performance.

6.5 Throughput
We in this section evaluate whether SpotSound can achieve
a bitrate higher than 320 bps by embedding more bits in
one signal symbol. To do so, we implement another three
versions of SpotSound, whose bitrates are 240 bps, 400 bps,
and 480 bps, respectively. Note that we just change the size
of the model input (i.e., 𝑋 ). The parameter size stays the
same as the original version.

Fig. 17(a) shows Bob’s BER with different bitrates. As can
be seen, Bob can still achieve a lower than 3% BER even at
the bitrate of 480bps. Fig. 17(b) shows EVE’s BER, which
does not show apparent variation under different bitrates.

6.6 Resistant to stronger EVEs
We in this section evaluate SpotSound’s ability in resisting
different EVEs. We first consider a special case where the
eavesdropper directly uses Bob’s model to decode Alice’s
signal at a non-target location. Fig. 18 (a) compares the eaves-
dropper’s performance when using EVE’s and Bob’s model.
As can be seen, the two models achieve very similar BER.

Then we evaluate SpotSound’s ability in resisting stronger
EVEs. We consider two cases. In the first case, EVE can com-
municate with Alice (it may be another legitimate receiver
of Alice who wants to eavesdrop on the communication be-
tween Alice and Bob), so it can measure and compensate its
channel ℎ𝐸 . In the second case, we consider the strengthened
EVEs as mentioned in Sec. 6.1.

We compare the BER obtained by the normal EVE and the
three stronger EVEs in different environments as shown in
Fig. 18 (b).

SpotSound’s signal

Room with window opened

Quiet room

Figure 19: Sound pressure of SpotSound’s signal mea-
sured from different distances.

Table 3: Processing time for a 60-bit packet.

Alice Bob
Raspberry pi 20.49 ms 7.5 ms

Snapdragon 870 3.05 ms 1.04 ms

As can be seen, the four types of EVEs achieve very similar
decoding performance. That is to say, one can hardly improve
EVE’s decoding performance by either increasing its channel
quality or increasing its decoding capability. This is because
that Alice can modulate the signal in a channel-selective
manner. The information embedded in the signal can pass
through only the target channel while is largely destroyed
on the non-target channels (e.g., EVE’s channel). So, the EVE
cannot detect the signal as long as its channel is different
from the target channel. We will show in Sec. 7 that the
signal received on a non-target channel resembles a random
noise, which can even pass the randomness test.

6.7 Sound pressure measurement
Although SpotSound transmits signal only on the inaudible
bandwidth (i.e., 17-20KHz), it may still produce faint noises
on the audible band due to the non-linearity in acoustic
devices. We in this section conduct an experiment to examine
whether SpotSound can produce noticeable sounds. In the
experiment, we measure the sound pressure of the signal
produced by Alice from different distances, the results are
shown in Fig. 19. As a comparison, we also plot the sound
pressure measured in a totally quiet room and an office with
ambient noise from outside the window. As can be seen,
the sound pressure produced by SpotSound is only slightly
higher than that measured in a totally quiet room, and is
lower than that measured in the office.

6.8 Time overhead
We have also measured the time overhead of SpotSound on
Raspberry pi and Snapdragon 870. Table 3 shows the pro-
cessing time required in generating/decoding a 60-bit packet.
As can be seen, the processing time for packet generation
and decoding is much shorter than the length of a packet.
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Figure 20: Evaluate the ran-
domness with KS test.

Depth=2

Figure 21: Computation
cost for brute force at-
tack.

7 SECURITY ANALYSIS
7.1 Randomness of EVE’s Signal
We first use Kolmogorov-Smirnov test to evaluate the gener-
ated signal’s goodness-of-fit with respect to random noise.
Fig. 20 shows that the signal generated by SpotSound passes
the test with Pvalue higher than 0.05 and achieves a simi-
lar level of fitness as the real ambient noise. In comparison,
conventional modulation signals show a very low level of
fitness, where only 1%∼10% cases can pass the test.

7.2 Resistant to brute force attack.
In the brute force attack, EVE tries to guess the CIR of Bob’s
channel and reconstruct Bob’s signal. Experimental results
tell that EVE can successfully decode Alice’s signal if its
channel CIR shows a higher than 0.7 similarity with Bob’s
CIR. However, obtaining such a channel is computationally
intractable. Specifically, the CIR measurement used in Spot-
Sound contains 3000 samples, so there will be 23000 possible
CIRs even when the depth of each sample is 2. Fig. 21 shows
the possibility that EVE can obtain a satisfying CIR with
one guess under different CIR lengths 𝐿. As can be seen, the
possibility decreases to 10−292 when 𝐿 > 2000. So, it is almost
impossible for EVE to obtain Bob’s CIR and reconstruct its
signal.

8 RELATEDWORK
We in this section discuss related work that we have not
touched in the previous sections.
Static signal reflectors. Besides leveraging antenna ar-

rays or meta-surface, another way to control the signal’s
propagation behavior is to use static reflectors [6, 31]. By
adding 3D-printed static reflectors around the sender or re-
ceiver, one can shape the outgoing or incoming signals. How-
ever, these methods lack reconfigurability and cannot adapt
to changing environmental conditions.
Communication with side channel. Another way to

achieve covert communication is to build a side channel
leveraging physical characteristics like vibration [22], heat
[11], screen light [26, 36], electromagnetic [10, 33], and etc.

These methods, however, require either physical contact or
specialized equipment, which makes them unsuitable for the
IoT scenario. Besides, they assume that the attackers do not
know the channel that the transceivers use. While, none of
the above is required in SpotSound.

Acoustic communication. Acoustic communication has
been studied in [3, 28].With a variety of modulationmethods,
they build a reliable acoustic channel for long-range, short-
range, and underwater communication. Different from those
methods, SpotSound aims to build a spatial selective channel
with the acoustic signal.

9 DISCUSSIONS AND LIMITATIONS
SpotSound still has limitations worth further exploration:

• Limited data rate. The data rate of our current prototype
is still very low, i.e., below 480bps, hence it is only applica-
ble to those low data-rate applications that communicate
with gateways intermittently. Accordingly, improving the
data rate of SpotSound becomes an immediate next step.

• Reliance on multipath effect. One assumption under-
lying SpotSound is that the signal transmitted to Bob and
EVE will propagate along different multipath channels. Ac-
cordingly, SpotSound work achieve inferior performance
in low or moderate multi-path environment. To address
this issue, one possible direction is to explore environment-
independent channel effects (e.g., device distortion) for
information hidden and we leave it for our future work.

10 CONCLUSIONS
Eavesdropping attacks have compromised the security of bil-
lions of IoT devices. SpotSound tries to build spatial-selective
channel among those devices. By controlling the signal’s
fine-grained shape, SpotSound can embed information into
random signal in a spatial-selective manner, making the mod-
ulated signal decodable only when received at a target lo-
cation. The evaluation of our current implementation of
SpotSound demonstrates that it can concentrate the signal
on a 0.25𝑚2 target area, and meanwhile achieves a data rate
of up to 480 bps.
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