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Abstract—Mobile phones nowadays are equipped with at least
dual microphones. We find when a user is typing on a phone, the
sounds generated from the vibration caused by finger’s tapping
on the screen surface can be captured by both microphones, and
these recorded sounds alone are informative enough to infer the
user’s keystrokes. This ability can be leveraged to enable useful
application designs, while it also raises a crucial privacy risk that
the private information typed by users on mobile phones has a
great potential to be leaked through such a recognition ability.
In this paper, we address two key design issues and demonstrate,
more importantly alarm people, that this risk is possible, which
could be related to many of us when we use our mobile phones.
We implement our proposed techniques in a prototype system and
conduct extensive experiments. The evaluation results indicate
promising successful rates for more than 4000 keystrokes from
different users on various types of mobile phones.

I. INTRODUCTION

Mobile phones nowadays are commonly equipped with (at

least) dual microphones [1]. The one at the bottom of a phone

receives the user’s voice in the phone call, and the other one on

the top of the phone measures the ambient noise level for the

noise cancellation. Multiple microphones lead to a significant

advance for improving the phone-call quality [2]. However, in

practice, users need to type on their mobile phones from time

to time, e.g., writing messages, inputting passwords, etc. In this

paper, we find when a user is typing, finger’s tapping on the

phone’s screen surface could cause a vibration of the touching

point on the device. The sound generated from this vibration

can be captured by both top- and bottom-microphones on the

phone as illustrated in Fig. 1(a), and these recorded sounds

are informative enough to infer the user’s keystrokes.

On a positive side, recent studies have exploited the ability

of microphones to develop various useful applications [3],

[4], [5]. This keystroke recognition ability could be further

leveraged in the future to develop a new input modality on

a ubiquitous surface [6] using two lightweight microphones

only. On the contrary, this also raises an immediate and serious

privacy concern — plenty of the user’s private information

(frequently typed by users on the phone, e.g., personal data,

passwords, messages, etc.) has a great potential to be com-

promised through mobile phones when the microphone data

is hacked (attack model is in §II-C) and the barrier to launch

this hacking is not high [7]. Hence, in this paper, we focus on

studying this keystroke recognition ability from an attacking

perspective to alarm people such a potential privacy leakage

risk that could severely sacrifice the user’s typing safety.

1 cm

3 mm(a) (b)

1 cm

3 mm

Fig. 1: (a) The sounds generated from the vibration (of the
touching spot on the device) caused by finger’s tapping on
the screen can be captured by microphones. (b) Typical
length of a key and distance between two adjacent keys.

We would like to note that this paper is not intended to

say the user’s tapping necessarily leads to the typing privacy

leakage. Because such tapping sounds are relatively weak,

they can be overwhelmed by the strong ambient noises, e.g.,
people’s conversations nearby, or the device vibration triggered

by the keyboard software and operating system (attack model

is in Section II). However, it is indeed also common that the

sounds generated from the vibration caused by the user finger’s

tapping can be recorded by microphones clearly in practice,

which are thus worth drawing our attention on this potential

privacy leakage risk. To demonstrate this keystroke recognition

ability, we need to address the following two challenges.

1) Weak acoustic signals. Although microphones can receive

the sounds from the vibration caused by finger’s tapping when

a user is typing, they are very weak signals, e.g., users are even

not aware of their existence usually. On the other hand, due

to the limited size of a mobile phone, the length of each key

and the distance between two adjacent keys (Fig. 1(b)) are

short normally, e.g., around 1 cm and 3 mm [7], respectively.

With a maximum microphone sampling rate on many phones,

e.g., 192 KHz, the resolution (i.e., the distinguishable distance

cross two consecutive acoustic samples that is 1.7 mm with

the 192 KHz sampling rate) in principle can recognize user’s

keystrokes on different keys. However, the screen tapping is

a subtle motion and its produced sounds are weak with low

signal to noise ratios (SNRs). This challenges the precise seg-

mentation and feature extraction for the recorded sounds in the

first place, because a slight signal processing inaccuracy may

bring the errors easily overwhelming the desired resolution. As

a result, if this issue is not addressed, the consequent keystroke
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recognition design is not viable.
2) Unsupervised keystroke recognition. Even the acoustic

signals were precisely processed finally, the user’s keystrokes

still cannot obtained immediately, because the adversary may

not have the labelled ground truth from the victim user to

train a classification system to recognize this user’s keystrokes.

Hence, a more practical setting is to achieve an unsupervised

keystroke recognition design, e.g., the adversary utilizes her

own data to train a classification system, yet it could be

further applied to a new victim user as well. However, different

people may have detailed typing behavior differences, leading

to different keystroke features. As a result, an effective design

to largely extract user-independent keystroke features to enable

the recognition is needed.
To address above challenges, we first decompose the orig-

inal recognition task (for all the keyboard keys) into a series

of recognition tasks with smaller “sizes” (e.g., less keystrokes

to be recognized for each). This could avoid the requirement

on the high-standard input data to recognize a large amount

of keys simultaneously. In particular, we utilize the time

difference of arrival (TDoA) [8] of the generated sound for

each keystroke measured by two microphones to divide all the

keys into three groups. Then we can train three classifiers for

each group. However, the recorded acoustic signals are weak

with low SNRs as stated above. It is not straightforward to

precisely identify the starting point of each sound wave that

corresponds to one keystroke, whereas if this identification

is inaccurate, the pre-grouping will be wrong and the final

result cannot be correct. We thus propose effective de-noise

and segmentation designs to tackle this issue.
On the other hand, we leverage the auto-encoder framework

from the deep learning domain [9] to extract the representative

features to achieve good recognition performance even with

the low-SNR data as input. In addition, we further leverage the

auto-encoder to fulfill an unsupervised keystroke recognition

system design to avoid requiring the labelled ground truth

from the victim user. Our basic idea is to cluster different

keystrokes and integrate the clustering-related loss functions

into the neural network design for keystroke recognition. By

doing so, the entire design does not rely on any ground truth

data from the victim user to accomplish the system training.

Instead, the system will automatically mine the representative

features that could lead to the desired number of clusters, and

the preserved features tend to be more user independent finally.
To demonstrate the efficacy of above designs, we develop

a prototype system, named TapLeak. We conduct extensive

experiments with six volunteers and we act as the adversary

to attack more than 4000 users’ keystrokes on different types

of mobile phones, wherein the volunteers’ data are not used

in the system training. The results show that TapLeak’s top-

1 successful rate is 84% and the top-3 accuracy increases to

92%. In summary, we make the following contributions.

• We demonstrate the possibility to infer user’s keystrokes

only using the sounds from finger’s tapping on screen and

revealing (more importantly alarm people) the potential

typing privacy leakage risk that may not be viable before.

Fig. 2: The sounds generated due to the finger’s tapping on
the screen received by the top-microphone (the 1st row)
and the bottom-microphone (the 2nd row) on a mobile
phone (Samsung Galaxy S7) in three environments with
different background noise levels: (a) a quiet library (35
dBSPL noise), (b) a normal office (55 dBSPL noise), and
(c) a noisy canteen (70 dBSPL noise), respectively.

• We propose effective techniques to address the weak

acoustic signals and unsupervised keystroke recognition

two main challenges in designing TapLeak.

• We develop a prototype system and conduct extensive

experiments by attacking different users’ more than 4000

keystrokes on different mobile phones.

The rest of this paper is organized as follows. We introduce

the preliminary and attack model in Section II. The TapLeak
design is detailed in Section III, and the system evaluation is

conducted in Section IV. We review related works in Section V

before the conclusion in Section VI.

II. PRELIMINARY AND ATTACK MODEL

In this section, we introduce the preliminary and the attack

model before we detail the TapLeak design in Section III.

A. Detectable Sounds due to Finger’s Tapping

Although the sound generated due to user’s finger tapping

on the screen is weak, e.g., users do not hear them usually, the

microphones on the mobile phone are near the sound source

and sensitive enough to capture them. In Fig. 2, we collect

such sounds in three environments with different background

noise levels, including a quiet library, a normal office and a

noisy canteen. From the result, we can see that the sounds

are detectable by both microphones, even in the noisy canteen

scenario. We repeat the experiments using different phones

and obtain a similar result. This brings an opportunity to infer

the user’s keystrokes through such recorded sounds.

For these recorded sounds, we further analyze their charac-

teristics and have the following observations:

• Time domain: for each keystroke, the recorded sounds last

for around 40 ms, leading to 7680 sampling points at the

maximum sampling rate 192 KHz [10] on many phones.

• Frequency domain: the energy of the recorded sounds

mainly fall in the range less than 2000 Hz, which could

be mixed with the background noise.

We consider these factors for designing TapLeak in Section III.
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Fig. 3: (a) Illustration of the TDoA measure for tapping
key “E”. (b) Representative hyperbolas for each group.

B. Distinct Sound Features

For these detectable sound waves, we further investigate

their distinct features to be used in the TapLeak design. In

particular, we characterize these features from temporal and

frequency two dimensions.

Temporal features. We can record the sounds for both

microphones at the same time [11]. Since the keyboard is

closer to the bottom-microphone usually, when a user types

on the screen, there exists a time different of arrival (TDoA)

for the generated sound received by two microphones, i.e.,
Δt = dt−db

v , where dt and db (in Fig. 3(a)) represent the

distances to top- and bottom-microphones respectively, and v
is the speed of sound. However, the TDoA values for different

tapping locations may not be unique and all the locations with

the same TDoA values could form a hyperbola with respect

to the two microphones’ locations. According to the 192 KHz

sampling rate, we can draw more than 50 hyperbolas covering

the keyboard area on a phone (this number can vary slightly

due to the phone size).

To avoid recognizing all the keys simultaneously (Section I),

we can classify all the keys into groups and then recognize

them in each group only. In TapLeak, we view each row on

the keyboard as one group and there are thus three groups

in total. For each group, there could be a set of hyperbolas

(with different TDoA values) overlapping with all the keys in

this group, and we select the hyperbola with a median TDoA

value in the set to represent this group. Fig. 3(b) illustrates

the three representative hyperbolas for each group. We note

that the selection of the hyperbolas for each group could be

different on different phones, which however is an one-time

effort. As we discuss soon in the attack model, we assume that

the adversary knows the specific phone type of the victim user

and the adversary can thus complete this selection in advance.

In summary, the temporal difference (TDoA) first classifies

the received sounds into one of three key groups (according

to the closeness to the three representative hyperbolas), based

on which we will further recognize them inside each group.

Frequency features. Mobile phone is a rigid object but it

may have heterogeneous densities and structures at different

places inside the device. As a result, when the user’s finger taps

different spots on the screen, the frequency spectrum of this

Fig. 4: Spectrum of the keystrokes on keys (a) “Q”, (b)
“W” and (c) “P” in one group, respectively.

vibration exhibits different features, which in turn generates

the acoustic sounds with distinct features. Therefore, we can

further distinguish different keys in each group according to

such frequency-domain features. For instance, Fig. 4 shows

the spectrum of keystrokes on keys “Q”, “W” and “P” in the

first group (row), respectively. We can see that for keys “W”

and “P”, which are far away to each other, their spectrums

are quite different. Moreover, for the neighboring keys “Q”

and “W”, their difference still exists yet becomes less obvious

from our manual observation. Thus, we propose to leverage

neural networks to extract their subtle differences to enable

the keystroke recognition (Section III).

C. Attack Model

The goal of this attack is to infer the user’s keystrokes on

a mobile device using the finger’s tapping sounds captured by

device’s microphones We consider the following attack model.

1) Phone and keyboard types. We assume that the adversary

has the prior knowledge of the type of the victim’s mobile

phone and the keyboard, so as to know the phone’s size and

select the representative hyperbolas for each group in advance,

e.g., adversary can peep in the victim’s vicinity. Moreover, in

this paper, we focus on the keystroke inference on the standard

English keyboard from mobile devices in a portrait orientation.

2) Ambient noises. In TapLeak, we consider the impact from

background noise. However, we assume that there are no other

ambient noises that dominate the recorded sounds, e.g., loud

conversations of people nearby. The adversary can launch the

attack selectively to minimize the influence from such ambient

inference noises from the environment.

3) Software generated signals. It is possible that the oper-

ating system generates a sound through the speaker and/or a

device vibration for each keystroke during the typing. These

functions can be disabled in the device setting. In our current

design, we primarily assume they are disabled, while we also

investigate their impacts through experiments in Section IV.

4) Hacking microphone data. We assume that the adversary

can access two microphones of the victim’s phone to collect

the microphone data and send them out. To this end, the

adversary can develop a malicious APP as a Trojan [12]. The

adversary can disguise the Trojan as some useful legitimate

APP or game and publish it to the APP market to fool the
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Fig. 5: Illustration of the working flow to infer the user’s keystrokes in TapLeak with three main steps.

Fig. 6: Pre-processing to identify the starting point for each keystroke. Spectrum of (a) the raw sound wave, (b) the
sound after Wiener filter and (c) the sound after Wiener filter plus a further difference amplifying.

victim to install, which provides the functions, e.g., voice

recognition, to gain the permission to access microphones [13]

during the installation of the Trojan APP. Once it is installed,

this APP listens in the background and sends collected micro-

phone data to the adversary.

III. DESIGN OF TapLeak

The working flow of TapLeak is illustrated in Fig. 5, which

contains three main steps:

• Signal segmentation. For the recorded tapping sound

waves, the adversary needs to identify the starting point

for each keystroke precisely, challenged by the relatively

high noise levels, e.g., low SNRs.

• Pre-grouping. For the segmented sound clips from both

microphones that correspond to one keystroke, the adver-

sary needs to further synchronize them to compute their

TDoA value for pre-grouping.

• Keystroke recognition. According to the pre-grouping re-

sult, the adversary selects the neural network correspond-

ing to the current group for the keystroke recognition.

We now detail the design of each step in the rest of this section.

A. Signal Pre-processing and Segmentation

For the recorded tapping sound waves, the first step is to

identify the starting point for each keystroke and then segment

them as a series of sound clips (one clip corresponds to one

keystroke). So the adversary obtains a stream of sound clip

pairs (from two microphones), which will be used for the pre-

grouping module in Section III-B.

1) Design challenge: The challenge in this first step is

the high-standard precision requirement on the starting point

search. Due to the limited microphone sampling rate, e.g., 192

KHz, one sampling point difference leads to a 1.7 mm error

in the distance calculation to each microphone. However, the

recorded sounds are weak with low SNRs and the background

noises could hide the starting pointing to prevent a precise

boundary search. Fig. 6(a) shows the spectrum of the raw

sound saves recorded with three keystrokes. Although it is

easy to tell the existence of these three keystrokes, the exact

starting point of each keystroke is blurred due to the noise.

As stated in Section I, the length of a key and distance

between two adjacent keys are short, e.g., around 1 cm and

3 mm, respectively. The search error of the starting point can

thus easily cause an inaccurate TDoA measure later, which,

as a direct consequence, could lead to a wrong pre-grouping

result and also the final keystroke recognition result.

2) Solution: We propose the following pre-processing be-

fore the segmentation to overcome this issue.

Because the keystroke signal and the noise have an overlap

in the frequency domain, we cannot apply the band-pass

filter to remove the noise directly. Thus, we leverage Wiener

filter [14] to handle such frequency-overlapped noise. Wiener

filter requires to collect one short piece of noise samples, e.g.,
0.25 seconds, before the filtering. This aims to “analyze” the

noise’s frequency characteristics to determine the parameters

in the filter, which then can be adopted to process the recorded

sounds. Fig. 6(b) shows the result after we apply the Wiener

filter. We can see the background noise is excluded substan-

tially and the starting point becomes more identifiable.

However, the starting point’s boundary is still not “sharp”

enough in Fig. 6(b) due to the residual noise. After analyzing

this spectrum, we observe that the noise becomes much

weaker (compared with keystroke sounds) already. Therefore,

we propose to further amplify the difference between the

keystroke sound and noise, so that the keystroke sound could

dominate the spectrum finally with clearer boundaries for each

starting point. To this end, for the sound wave after the Wiener

filter, we compute the square for each time step t as follows,

which can make the large amplitude even larger and a small
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Tt

Tt

TbTb

Fig. 7: Analysis of the TDoA error if we compute TDoA
using the search starting points directly. The amplitude of
the sound from the bottom-microphone is stronger because
user’s tapping position is closer to this microphone.

amplitude (e.g., <1 for noise) even smaller:

s′(t) =
∑t+W

n=t
s2(n), (1)

where s(n) is the amplitude of the acoustic signal and W is

a sliding window and we set its size |W| to 20 in our current

design (e.g., approximately 0.1 ms with the 192 KHz sampling

rate). Fig. 6(c) shows the spectrum for s′(t), which now has

a sharper starting point for each keystroke.

After the signal pre-processing above, we can segment the

sound waves into clips with a clearly identified starting point

for each. Two clips (from two microphones) that own a similar

starting point in the time domain (e.g., correspond to the same

keystroke) then form a pair for the pre-grouping module.

B. Pre-grouping based on TDoA

As aforementioned in Section II-B, we divide the keyboard

keys into three groups and recognize keystrokes inside one

group only, to avoid recognizing all the keys each time1. In

particular, for each sound clip pair obtained after the signal

segmentation, we calculate their TDoA value with respect to

the two microphones. As discussed for Fig. 3(b), the adversary

can determine the representative hyperbola (with the median

TDoA value) for each group in advance. Then the current

sound clip pair will be classified into the group whose repre-

sentative hyperbola’s TDoA is closest to this sound clip pair’s.

The adversary will later utilize the neural network of this group

to conduct the keystroke recognition in Section III-C.

Although we can record the sounds for both microphones at

the same time [11] and have also identified the starting points

for both sound clips in one pair already, we do not suggest

to compute their TDoA directly due to the following reason.

Denote T̂b and Tb as the actual and our searched starting points

1To amplify the difference between the tapping sound and the residual noise
for precisely identifying the starting point, Eqn. (1) could distort the original
sound wave, which becomes less effective for recognizing keystrokes. Hence,
we leverage it for the starting point search only. Afterwards, we still use
the sound waves after the Wiener filter merely for the consequent keystroke
recognition. Because they are still mixed with certain noises, it is necessary
to avoid recognizing all the keys each time and use pre-grouping to improve
the performance as evaluated in Section IV.

for the sound clip received by the bottom-microphone. The

search error for this starting point is Eb = Tb − T̂b. We can

similarly define the error for the top-microphone as Et =
Tt − T̂t. Therefore, the calculated TDoA equals to

TDoA = (T̂t − T̂b) + (Et − Eb). (2)

In fact, the error from the second term Et − Eb can be

further minimized. To this end, we can fix the calculated

starting point for one microphone, and move the sound clip

from the other microphone to perform the cross-correlation [8].

As these two sound clips essentially refer to the same audio

content, the peak of the cross-correlation indicates that they

are best overlapped with each other, and the starting point

for the second microphone can be determined. So the cross-

correlation basically introduces the starting point search error

only once. Through our experiment in Section IV, this can

improve the pre-grouping accuracy by 30%.

C. Unsupervised Keystroke Recognition

The adversary finally needs to train one neural network

for each group to recognize the keystrokes inside the group.

Because the keyboard is closer to the bottom microphone

usually (so its recorded sound is stronger), we thus use

the segmented sound clips from this microphones for the

keystroke recognition. However, the adversary does not have

the labelled ground truth data from the victim user to train each

neural network. Thus, the adversary is expected to achieve an

unsupervised design, e.g., using her own data, to avoid the

demand on the victim’s data in the system training. To this end,

we propose to utilize an advanced neural network framework,

named auto-encoder, to extract the most representative features

from the input sound clips and then leverage it to accomplish

the unsupervised recognition system design.

1) Auto-encoder framework: An auto-encoder neural net-

work contains the following four major components usually:

• Input: when the neural network handles acoustic signals,

we normally provide the Mel-Frequency Cepstrum Coef-

ficients (MFCC) [15] of the acoustic signal as input [16].

• Encoder: the encoder fulfills a non-linear conversion to

extract the most representative features from the input.

• Representative feature: the extracted feature is viewed

as a new representation of the original input (by preserv-

ing the most essential characteristics for a learning task).

• Decoder: the decoder adjusts the representative feature

by utilizing it to recover the original input.

According to the similarity between the original input and the

recovered input by decoder, we can define a recovery loss as:

Lrec =
1

N

∑N

t=1
f(xi)− h(f(x(t))), (3)

where x(t) is the input at time stamp t, N is the number of

input data, f(·) is the encoder and h(·) is the decoder. To

couple above auto-encoder network with a specific learning

task, the “representative feature” could serve as the input of

the learning task, and its own loss function will be combined

with Lrec. The training aims to minimize the overall loss.
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2) Unsupervised recognition with auto-encoder: With the

auto-encoder framework stated above, we now introduce our

recognition design in TapLeak.

Encoder and decoder designs. The auto-encoder frame-

work is widely utilized in the computer vision domain [17],

wherein the input is the 2D image. Therefore, the encoder and

decoder are usually implemented by a multi-layer perceptron

or 2D convolutional neural network (CNN) [18]. For the

acoustic signal, we can apply the short-term Fourier transform

(STFT) and then compute its MFCC to obtain its MFCC

spectrum (Fig. 8), which can also be viewed as a 2D “image”:

• Its x-axis is time. We set its length as 40 ms that can

cover the segmented sound clip in the time domain.

• Its y-axis is the frequency. We set its range from 0 to 2

KHz to cover the frequency range of the tapping sound.

• The value of (x, y) indicates the frequency response.

Because the length of the spectrum’s x-axis is short and the

useful features are mixed with noises (low SNRs), we find that

using one perceptron or 2D CNN to analyze such a spectrum

image as a whole could bias the feature extraction to the higher

SNR parts and miss many useful yet less “obvious” parts.

Therefore, we propose to divide the spectrum image input

into several strips along the time domain, e.g., the duration of

each strip is set to 7 ms empirically in our current implementa-

tion. For each strip, we associate a three-layer CNN to analyze

its feature. The purpose of this design is to fully modify

the entire spectrum image to generate the final representative

feature. In particular, we denote xi as the the ith input strip,

and the corresponding CNN f i(xi) can be expressed as:

f i(xi) =
∑n

j=1

∑m

k=1
xi
j,k · wk, (4)

where n is the length of the input xi, w is the coefficient

vector of CNN, and m is the length of w. Each CNN in

the decoder can be designed similarly. Through the evaluation

in Section IV, we find this encoder and decoder design can

effectively improve the recognition performance (Section IV).

Recognition design. With the auto-encoder framework, we

next fulfill the keystroke recognition design. Supposing for

each keystroke sound clip, the adversary has its ground truth

(i.e., which key is tapped). The adversary can train another

neural network for classification (recognition), wherein the

input of this network is the representative feature extracted

by the auto-encoder and the output is the different keys to

be recognized in the current group. However, the problem is

that this recognition ability will be only effective for the user

whose data is used in the system training, while the adversary

may not have such ground truth from the victim user.

To overcome this issue, we find the adversary can collect

her own tapping sound data but without requiring the ground

truth of the data (otherwise the classifier can mainly recognize

adversary’s tapping). Then the adversary applies the clustering

algorithm to cluster the representative features extracted from

the auto-encoder, and the total number of clusters equals to

the number of keys to be recognized in this group, which

is known by the pre-grouping in advance. With the tailored

Representative  
feature

Encoder

Decoder

Recovery
 loss

1

2

3
1

2

3

Clustering

Inner- and Inter-
cluster distances

Input

Fig. 8: Illustration of the auto-encoder based unsupervised
keystroke recognition design.

loss functions defined below, we can combine them with

the recovery loss Lrec, and train the auto-encoder and the

clustering model, e.g., K-means [19], at the same time. By

doing so, the overall system does not rely on any ground truth

data to accomplish the training. Instead, the auto-encoder will

automatically mine the representative feature that could lead

to the desired number of clusters, and the preserved features

tend to be more user independent.2 To fulfill this design, we

introduce the following two loss functions for clustering.

Inner-cluster distance Linner. To cluster one data point, we

can compute its distance to all the cluster centers and assign it

to the cluster with the smallest distance. For a good clustering,

the data points in one cluster should gather tightly near their

cluster center. As a result, the average distance between the

data points and their closest cluster center is one metric to

quantify the quality of the clustering result. We thus define

the inner-distance loss term as the average distance between

the data points and their cluster centers as follows:

Linner =
1

N

∑N

i=1
||f (t)(ai)− c

(t)
i ||, (5)

c
(t)
i = argmin

c
(t−1)
j

||f (t)(ai)− c
(t−1)
j ||, (6)

where f (t)(·) is the encoder at the tth iteration in the training,

ai is the feature value of the ith sound clip input, N is the

total number of inputs used for training, and c
(t)
i is the closest

cluster center for ai. Minimizing Linner basically tends to

gather all the features in one cluster close to each other.

Inter-cluster distance Linter. On the other hand, the dis-

tance between cluster centers is also important to achieve a

good clustering. For two neighboring clusters, if the distance

between their centers is small, it is more likely to incur a

clustering error. However, such inter-cluster distance cannot be

used to define a loss term directly, because the auto-encoder

and the clustering model need to be trained in an iterative

manner. For a given iteration to optimize the auto-encoder,

all the clustering centers are fixed from the last iteration,

which thus form a set of constant values of distances between

2Because the area that the user’s finger touches the screen during typing
is small, the characteristics from the vibration of the tapping spot likely
dominates the feature of the generated sound. As a result, it is possible to
recognizes keystrokes in an unsupervised manner.

970

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 25,2023 at 20:38:23 UTC from IEEE Xplore.  Restrictions apply. 



clustering centers. Such constant distances cannot be used to

update weights of the current clustering model.

Fortunately, we observe that for each data point belonging to

cluster c, if their distances to the centers of all other clusters

(not c) increase, this implies that the cluster c tends to be

farther away from other clusters, because the center of one

cluster is computed as the average coordinates of data points

in this cluster. So we define the inter-distance loss term as:

Linter =
∑N

i=1
||f (t)(ai)− s

(t)
i ||, (7)

s
(t)
i = argmin

c
(t−1)
j �=c

(t−1)
i

||f (t)(ai)− c
(t−1)
j ||, (8)

where s
(t)
i is the second closest cluster center to the ith input

data in iteration t. Maximizing Linter thus tends to make

different cluster centers separate away from each other.

Overall loss function Lloss. With the two loss functions

introduced above, the final loss function in TapLeak is:

Lloss = Lrec + α× Linner − β × Linter, (9)

where α and β are two parameters. With Lloss, we can train

the auto-encoder and clustering model together in an iterative

manner [20]. The cluster centers are randomly initialized at

the beginning. The total number of clusters equals to the total

number of keystrokes to be recognized. Then in any iteration

that optimizes the auto-encoder, the cluster centers computed

from the previous iteration are fixed and the overall loss Lloss

is calculated by the gradient descent to turn the auto-encoder.

After the optimization of the auto-encoder, the cluster centers

will be updated using the auto-encoder obtained so far. This

training process repeats until the overall loss becomes stable

and cannot be further reduced.

After training, when a new sound is provided, it will be pro-

cessed by the encoder to obtain its representative feature, based

on which we further classify it into one cluster corresponding

one keystroke. We note that because TapLeak does not require

any labelled ground truth in the training, this system is more

user independent. Therefore, the adversary can use it to infer

the keystrokes from a victim user whose data is not used in

the system training any more, as evaluated in the next section.

IV. SYSTEM EVALUATION

In this section, we evaluate the performance of TapLeak.

A. Experiment Setup

Implementation. We implement TapLeak on Samsung Galaxy

S7, Nexus 5X and Huawei P30 Pro as the victim devices.

We invite one volunteer as the adversary. For each device, we

collect 200 keystrokes for each key from the adversary to form

Operations Inference time

Signal processing and pre-grouping 200 ms
Recognizing one keystroke in group 1 15 ms
Recognizing one keystroke in group 2 14 ms
Recognizing one keystroke in group 3 14 ms

TABLE I: Inference time of different components.
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Fig. 9: Overall performance of TapLeak for each key.

the training data set. We develop TapLeak using a desktop with

Intel i7-8700K CPU and Nvidia GTX 2080Ti GPU. As stated

in the system design, we train TapLeak for each type of the

mobile phone to launch the attack. The training of the neural

network for one group takes around 5 hours. Table I further

shows the time consumption to infer one keystroke in different

components (measured on the desktop), e.g., the average time

cost is nearly 215 ms for one keystroke inference.

Methodology. To evaluate the system performance, we invite

six volunteers (different from the adversary) to serve as the

victim users including three males and three females. These

victim users type on mobile phones and their keystrokes cover

all the keys on the boards. We also consider different settings

in the data collection, such as the ambient noise level, the

typing speed, the angle how the user holds the phone, etc.

We collect 4,680 keystrokes from victim users to evaluate the

performance, and their data is not used to train TapLeak (all

of them are used for the evaluation).

Metrics. We use the following metrics to show the perfor-

mance of TapLeak.

Top-k Accuracy. A list of key candidates can be provided by

TapLeak ordered by the distances to each cluster center (i.e.,
likelihood). Given the first k candidates, i.e., the candidates

with the first k highest likelihood, we check whether the typed

key (i.e., ground truth) is among them. Particularly, for n
keystrokes, we define its top-k accuracy as Ak = m

n , where

m is the number of inferences in which the top-k candidates

contain the ground truth.

Confusion matrix. In a confusion matrix, each row repre-

sents each key on the keyboard, and each column represents

each identified key by TapLeak. For example, for an entry

located at the ith row and jth column, the reported value

means that the percentage of the number of ith keys (i.e., the

typed keys) are identified as the jth key by TapLeak, out of

the total typed number for the ith key.
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Fig. 10: Confusion matrix of each key in TapLeak.

B. Overall Performance

As stated in Section II-B, in TapLeak, we view each row on

the keyboard as one group and there are thus three groups in

total. Fig. 9 shows the top-1 to top-3 accuracy of TapLeak for

each key in the three groups. The average top-1 accuracy cross

all three groups is 83.8%, and the top-2 and top-3 accuracy

further increases to 89.7% and 92.2%, respectively. These

results indicates the efficacy of the TapLeak design. Because

the area that the user’s finger touches the screen during typing

is small, the characteristics from the vibration of the tapping

spot likely dominates the feature of the generated sound. As

a result, TapLeak can achieve a good performance even if it

recognizes keystrokes in an unsupervised manner.

To understand how the recognition errors distribute, Fig. 10

further plots the confusion matrix. We observe that most of

the wrongly identified keys are recognized as the neighboring

keys in the same group. For example, a few keystrokes of

key “Q” are identified as key “W”, which is the neighbor

of “Q” in the same group. The short distance between two

adjacent keys could produce similar keystroke sounds with

more similar MFCC features, which we believe is the main

reason that causes the recognition error.

C. Impacts of System Components

Next, we investigate the impacts of the system component

design choices on the performance.

Performance gains. TapLeak contains two major components:

pre-grouping and auto-encoder based recognition. In Fig. 11,

we first investigate the performance gain that each of these

two components brings. In particular, we develop other two

versions of TapLeak: “No pre-grouping” means that we always

recognize all the keys at the same time, and “No auto-encoder”

means that we apply the clustering to the MFCC of the sound

clips directly. Fig. 11 shows that the top-1 to top-3 accuracy

of TapLeak without pre-grouping drops to 58.4%, 64.9% and

74.1%, respectively. The reason is that the neighboring keys

in different groups cannot be distinguished any more in the

first place. Moreover, the top-1 to top-3 accuracy of TapLeak
without auto-encoder (with pre-grouping) decreases to 48.7%,

Fig. 11: Impacts of different system components.

56.1% and 63.5%, respectively. This significant reduction indi-

cates that the auto-encoder can extract representative features

effectively that are needed in the unsupervised clustering.

Different pre-grouping methods. In Section III-B, we ana-

lyze that using two identified starting points from two micro-

phones could cause larger errors compared with the cross-

correlation. Fig. 12(a) compares their performance of the

pre-grouping accuracy. We can see that the cross-correlation

improve the accuracy by 24.4% to 36.2%.

Fig. 12: Keystroke recognition accuracy (a) with different
methods to calculate TDoA for pre-grouping, and (b) with
different auto-encoder designs.

Different auto-encoder designs. We next study the impact

of different auto-encoder designs. First, to fully modify the

entire spectrum image to generate representative features, we

propose to divide the spectrum image into several strips.

With respect to this design, we compare it with the direct

analysis using one 2D CNN applied to the entire spectrum

image (“Normal CNN”). Fig. 12(b) shows that the top-1,

top-2 and top-3 accuracy of the system with auto-encoder

using 2D CNN are 76.4%, 83.4% and 85.5%, respectively.

Our design outperforms it by nearly 10%. On the other

hand, we also propose two dedicated loss functions for the

keystroke recognition. If we disable these loss functions using

the recovery loss only (“Normal Loss”), Fig. 12(b) shows
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Fig. 13: Keystroke recognition accuracy (a) for different
users and (b) under different typing speeds.

that the top-1, top-2 and top-3 accuracy of the system will

be reduced to 64.8%, 73.0% and 74.8%, respectively. The

accuracy reduction reaches about 20%, which indicates that

our proposed loss functions can guide the auto-encoder to learn

a better representative feature for the clustering task.

D. Other Micro-Benchmarks

Different users. Fig. 13(a) plots the top-1 to top-3 accuracy of

TapLeak for the six different victim users in the experiments.

We find that is robust and performs well among all the users,

i.e., the average of top-1 accuracy is 82.1%, while top-2 and

top-3 accuracy increase to 89.2% and 94.7%, respectively.

Different typing speeds. We next examine the impact of

different typing speeds. To this end, we divide the typing

speeds into three levels: low speed: around 60 keystrokes per

minute (i.e., the typing speed of collecting data in previous

experiments), medium speed: around 90 keystrokes per minute,

and high speed: around 120 keystroke per minute. Because

the duration of each tapping sound lasts around 40 ms, the

interval between two consecutive typing (even with a relatively

high speed) is much lager than this duration. Therefore, we

can see from Fig. 13(b) that TapLeak can achieve comparable

performance under different typing speeds.

Different device angles. Users may hold the mobile devices

with different angles (between the device’s body and the hori-

zontal plane) during their typing. To investigate this impact, we

examine the system performance under four different angles,

including 0◦, 15◦, 30◦, and 45◦, respectively. For 0◦, we put

the phone on the desk, while for other degrees, the volunteer

holds the phone in one hand and uses the other hand to type

on the screen. Fig. 14(a) reports the performance. We find

that this factor does not impact the TapLeak’s performance

significantly, e.g., the top-1 accuracy varies from 79.6% to

83.8% in the experiment.

Different types of mobile phones. Next, we examine the

TapLeak’s performance on three mobile phones with different

screen sizes (e.g., a 5.1-inches Samsung Galaxy S7 with

Android 7.0, a 5.2-inches Nexus 5X with Android 6.0, and a

Fig. 14: Keystroke recognition accuracy (a) with different
angles between the device screen and the horizontal plane,
and (b) with different type of mobile phones.

6.47-inches Huawei P30 Pro with Android 10.0). The sampling

rates of the microphones are still 192 KHz for all the three

mobile phones, and the number of groups in the pre-grouping

remains to be three. However, the representative hyperbolas

for the three groups are different on different phones due to

their different screen sizes and key sizes. In Fig. 14(b), we

plot the top-1 to top-3 accuracy of the keystroke recognition

on each mobile phone, where TapLeak can achieve a stable

performance cross all three types of the mobile phones.

Different background noise levels. To understand how the

background noise influences the performance of TapLeak,

we conduct the experiment in three real environments with

different background noise levels, e.g., a quiet library (35

dBSPL noise), a less noisy office (55 dBSPL noise) and a

noisy canteen (70 dBSPL noise). Fig. 15(a) shows the top-1

to top-3 accuracy in the above three environments. We find that

the performance of TapLeak decreases with the increase of the

background noise level. For example, the top-1 accuracy in the

quiet library is 90.2%, and reduces to 83.8% and 65.9% in the

office and in the canteen, respectively. We observe that some

unpredictable loud sounds in these environments, e.g., the

people’s talking and moving chairs nearby, can overwhelm the

recorded tapping sounds, which in turn degrade the keystroke

recognition performance.

E. Possible Defense Mechanism

Finally, we discuss the possible mechanism to defend this

attack. We notice that the operating system of a mobile device

can generate a sound through the speaker and/or trigger the

motor to vibrate for each keystroke. Both could produce extra

sounds. Such sounds will be mixed with the sound generated

by the user finger’s tapping, which may potentially disturb and

even impair the keystroke recognition.

We first examine the software generated sounds only.

Fig. 15(b) shows the performance of TapLeak under different

levels of the software generated sounds. From the result, we

find that such sounds do not impact the system performance.
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Fig. 15: Keystroke recognition accuracy (a) with different
background noise levels, (b) with different software gen-
erated key sound levels and (c) with different software
generated device vibration levels.

This is because although for each keystroke, we now record

two types of the sounds. The software generated sound always

suffers a short delay, e.g., about 100 ms, probably due to the

responding time of the operation system. This delay is larger

than the duration (e.g., 40 ms) of the sound generated by

the vibration caused by the finger’s tapping. It is unlikely for

the software generated sound to overlap with the consequent

keystroke sounds (if so, the user needs to type at least 10 keys

per second). As the software generated sound usually has a

much larger amplitude compared with the vibration generated

sounds, we can easily separate them to exclude its impact.

Thus, the software generated sound has a limited impact on

the proposed attack, which is not a suitable defence measure.

However, we find that the vibration of the device’s motor

triggered by the operating system could impact the perfor-

mance of TapLeak significantly. Fig. 15(c) shows that the top-

1 accuracy decreases to 54.2% at -80dBm power level of the

motor vibration, and rapidly drops to 16.6% and 3.2% when

the power increases to -77dBm and -60dBm, respectively. By

analyzing the recorded sounds, we observe that the delay of

the additional sound caused by the motor’s vibration is only 30

ms, which will be overlapped with the sound from the finger’s

tapping. Moreover, the frequency response of the motor’s vi-

bration also mixes with finger’s tapping sound in the frequency

domain. Hence, the performance of TapLeak degrades, while

this inspires us that enabling the motor vibration could be a

possible mechanism to defend this attack.

V. RELATED WORK

Inferring user’s keystrokes. In the literature, there are some

existing efforts made to infer the user’s keystrokes on a mobile

phone using various sensors on the same device. For instance,

TouchLogger [21] and TapLogger [7] utilize on-board motion

sensors to infer keystrokes on numeric keyboards. TapPrints

[22] expands the inference area to any location on the screen.

To further improve the performance, PIN Skimmer [23] uses

microphone to detect the keystroke events and camera to

estimate the slant of the phone caused by the tapping action.

Of course, we are not the first one to look at the keystroke

recognition problem through the user’s finger tapping sounds.

Narain et al. [13] utilize a set of on-board sensors, includ-

ing microphones, to realize a keystroke recognition design.

Shumailov et al. [24] utilize the TDoA measurements of the

acoustic signals between the two microphones to recognize the

keystrokes. Under a similar setting, TapSnoop [25] improves

the accuracy with adaptive preprocessing and more complex

classification model. Compared to our system, TapSnoop re-

quires enough data from the victim. We take one more step

to show the possibility to leak user’s typing privacy through

the tapping sounds only with a comprehensive unsupervised

design, so as to reveal (more importantly alarm people) the

further privacy leakage risk that may not be viable before.
Recently, researchers also investigate the possibilities to

infer user’s keystrokes on an external keyboard (e.g., keyboard

of a computer) by using one mobile phone (close to the

victim) to record the keystroke sounds directly [26], [27],

[28], [29], [30] or transmit inaudible sounds first and then

record the reflected sounds by user’s finger in the typing [31].

On the other hand, some researchers also study the keystroke

inference on mobile phones [32], [33] or laptops [34] through

some external devices, e.g., smart watch on the user’s wrist,

nearby camera [35], etc. However, these existing works do not

address the unique challenges solved in designing TapLeak.

Tracking and sensing designs using acoustic signals. Recent

studies propose to play acoustic signals to achieve an accurate

tracking of the user’s motion. LLAP [36] can achieve a high-

quality finger tracking on a 2-D plane. VSkin [11] combines

the structure-borne and air-borne sounds to sense the user’s

finger typing or movement at the back of a mobile phone.

Mao et al. [5] further utilize RNNs to achieve a room-scale

hand motion tracking. In addition to the tracking of the user’s

motion, some other works also study the tracking or ranging

for another mobile device [37], [38], [39], [40]. Different from

these works, TapLeak focuses on inferring a user’s keystrokes

when the user types on a mobile device.

Auto-encoder in deep learning. The auto-encoder framework

is widely used to explore a better representation of the input

data in the deep learning domain [9]. Existing works utilize

auto-encoder for dimensionality reduction [41], feature ex-

traction [42], recommendation system design [43], and image

compression [17]. Moreover, some works [20], [44] embed

the deep auto-encoder into a clustering procedure to learn

the best representation for the clustering task. To address

the unsupervised keystroke recognition issue, we propose a

tailored network and dedicated loss functions to integrate the

clustering ability with auto-encoder to address this issue.

VI. CONCLUSION

This paper presents TapLeak to demonstrate (more impor-

tantly alarm people) a crucial typing privacy leakage risk

through microphones on mobile phones only. We propose
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effective solutions to address weak signals and unsupervised

keystroke recognition two major design issues, and implement

our designs in a prototype system. Extensive experiments

indicate the efficacy of TapLeak by attacking more than 4000

keystrokes from different users on various mobile phones.

ACKNOWLEDGEMENT

The work described in this paper was sponsored by the

project JCYJ20190808183203749 supported by the Science

Technology and Innovation Committee of Shenzhen Munici-

pality, and the GRF grant from Research Grants Council of

Hong Kong (Project No. CityU 11217817). Zhenjiang Li is

the corresponding author.

REFERENCES

[1] B. Jiang, S. Wu, F. Lin, and J. Xu, “Detecting and switching between
noise reduction modes in multi-microphone mobile devices,” Aug. 15
2017, uS Patent 9,736,287.

[2] W. Jin, M. J. Taghizadeh, K. Chen, and W. Xiao, “Multi-channel noise
reduction for hands-free voice communication on mobile phones,” in
Proc. of IEEE ICASSP, 2017.

[3] P. Xie, J. Feng, Z. Cao, and J. Wang, “Genewave: Fast authentication and
key agreement on commodity mobile devices,” IEEE/ACM Transactions
on Networking, 2018.

[4] P. Zhou, Y. Zheng, and M. Li, “How long to wait? predicting bus arrival
time with mobile phone based participatory sensing,” in Proc. of ACM
MobiSys, 2012.

[5] W. Mao, M. Wang, W. Sun, L. Qiu, S. Pradhan, and Y.-C. Chen, “Rnn-
based room scale hand motion tracking,” in Proc. of ACM MobiCom,
2019.

[6] J. Liu, C. Wang, Y. Chen, and N. Saxena, “Vibwrite: Towards finger-
input authentication on ubiquitous surfaces via physical vibration,” in
Proc. of ACM CCS, 2017.

[7] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on
smartphone touchscreens using on-board motion sensors,” in Proc. of
ACM WiSec, 2012.

[8] F. Gustafsson and F. Gunnarsson, “Positioning using time-difference of
arrival measurements,” in Proc. of IEEE ICASSP, 2003.

[9] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2013.

[10] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu, “Dolphinattack:
Inaudible voice commands,” in Proc. of ACM CCS, 2017.

[11] K. Sun, T. Zhao, W. Wang, and L. Xie, “Vskin: Sensing touch gestures
on surfaces of mobile devices using acoustic signals,” in Proc. of ACM
MobiCom, 2018.

[12] Y. Zhou, Z. Wang, W. Zhou, X. Jiang, and P. Ning, “Detecting malicious
apps in official and alternative android markets,” in Proc. of ACM
CODASPY, 2012.

[13] S. Narain, A. Sanatinia, and G. Noubir, “Single-stroke language-agnostic
keylogging using stereo-microphones and domain specific machine
learning,” in Proc. of ACM WiSec, 2014.

[14] P. Scalart et al., “Speech enhancement based on a priori signal to noise
estimation,” in Proc. of IEEE ICASSP. IEEE, 1996.

[15] T. Kinnunen and H. Li, “An overview of text-independent speaker
recognition: From features to supervectors,” Speech communication,
2010.
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means clustering with background knowledge,” in Proc. of ICML, 2001.

[20] C. Song, F. Liu, Y. Huang, L. Wang, and T. Tan, “Auto-encoder based
data clustering,” in Proc. of Springer CIARP, 2013.

[21] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch screen
from smartphone motion.” USENIX Summit on Hot Topics in Security,
2011.

[22] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury,
“Tapprints: your finger taps have fingerprints,” in Proc. of ACM MobiSys,
2012.

[23] L. Simon and R. Anderson, “Pin skimmer: Inferring pins through the
camera and microphone,” in Proc. of ACM SPSM, 2013.

[24] I. Shumailov, L. Simon, J. Yan, and R. Anderson, “Hearing your
touch: A new acoustic side channel on smartphones,” arXiv preprint
arXiv:1903.11137, 2019.

[25] H. Kim, B. Joe, and Y. Liu, “Tapsnoop: Leveraging tap sounds to infer
tapstrokes on touchscreen devices,” IEEE Access, 2020.

[26] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” in Proc. of
IEEE S&P, 2004.

[27] J. Liu, Y. Wang, G. Kar, Y. Chen, J. Yang, and M. Gruteser, “Snooping
keystrokes with mm-level audio ranging on a single phone,” in Proc. of
ACM MobiCom, 2015.

[28] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations
revisited,” ACM Transactions on Information and System Security, 2009.

[29] T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free attacks using
keyboard acoustic emanations,” in Proc. of ACM CCS, 2014.

[30] Y. Berger, A. Wool, and A. Yeredor, “Dictionary attacks using keyboard
acoustic emanations,” in Proc. of ACM CCS, 2006.

[31] L. Lu, J. Yu, Y. Chen, Y. Zhu, X. Xu, G. Xue, and M. Li, “Keylister-
ber: Inferring keystrokes on qwerty keyboard of touch screen through
acoustic signals,” in Proc. of IEEE INFOCOM, 2019.

[32] C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu, “Friend or foe?: Your
wearable devices reveal your personal pin,” in Proc. of ACM ASIACCS,
2016.

[33] Y. Liu and Z. Li, “aleak: Privacy leakage through context-free wearable
side-channel,” in Proc. of IEEE INFOCOM, 2018.

[34] H. Wang, T. T.-T. Lai, and R. Roy Choudhury, “Mole: Motion leaks
through smartwatch sensors,” in Proc. of ACM MobiCom, 2015.

[35] G. Ye, Z. Tang, D. Fang, X. Chen, K. I. Kim, B. Taylor, and Z. Wang,
“Cracking android pattern lock in five attempts,” in Proc. of NDSS, 2017.

[36] W. Wang, A. X. Liu, and K. Sun, “Device-free gesture tracking using
acoustic signals,” in Proc. of ACM MobiCom, 2016.

[37] C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan, “Beepbeep: a high
accuracy acoustic ranging system using cots mobile devices,” in Proc. of
ACM SenSys, 2007.

[38] S. P. Tarzia, P. A. Dinda, R. P. Dick, and G. Memik, “Indoor localization
without infrastructure using the acoustic background spectrum,” in
Proc. of ACM MobiSys, 2011.

[39] J. Yang, S. Sidhom, G. Chandrasekaran, T. Vu, H. Liu, N. Cecan,
Y. Chen, M. Gruteser, and R. P. Martin, “Detecting driver phone use
leveraging car speakers,” in Proc. of ACM MobiCom, 2011.

[40] W. Mao, J. He, and L. Qiu, “Cat: high-precision acoustic motion
tracking,” in Proc. of ACM MobiCom, 2016.

[41] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, 2006.

[42] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proc. of
ICML, 2008.

[43] X. Li and J. She, “Collaborative variational autoencoder for recom-
mender systems,” in Proc. of ACM SIGKDD, 2017.

[44] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep clustering with convolutional
autoencoders,” in Proc. of Springer ICONIP, 2017.

975

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 25,2023 at 20:38:23 UTC from IEEE Xplore.  Restrictions apply. 


