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ABSTRACT
We present the design and implementation of EarVoice, a light-
weight mobile service that enables hands-free voice assistant acti-
vation on commodity earphones. EarVoice comprises two design
modules: one for joint speech detection and primary user identifi-
cation that explores the attributes of the air channel and in-body
audio pathway to differentiate between the primary user and oth-
ers nearby; and another for accurate wakeup word enhancement,
which employs a “copy, paste, and adapt” approach to reconstruct
the missing high-frequency component in speech recordings. To
minimize false positives, enhance agility, and preserve privacy, we
deploy EarVoice on a dongle where the proposed signal processing
algorithms are streamlined with a gating mechanism to permit
only the primary user’s speech to enter the pairing device (e.g., a
smartphone) for wakeup word recognition, preventing unintended
disclosure of ambient conversations. We implemented the don-
gle on a 4-layer PCB board and conducted extensive experiments
with 23 participants in both controlled and uncontrolled scenarios.
The experiment results show that EarVoice achieves around 90%
wakeup word recognition accuracy in stationary scenarios, which
is on par with the high-end, multi-sensor fusion-based Airpods
Pro earbud. EarVoice’s performance drops to 84% on mobile cases,
slightly worse than Airpods (around 90%).

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile de-
vices; • Hardware→ Emerging technologies.
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1 INTRODUCTION
Voice assistant (VA) has become an indispensable part of mobile
systems [7, 27]. It serves as a natural means of communication that
transcends language barriers, making mobile applications more
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Figure 1: A few representative examples of EarVoice. (left):
EarVoice allows mobile users to activate their voice assistant with-
out hand intervention. (right): EarVoice can automatically detect
the primary speaker, avoiding false alarms.

accessible and inclusive for a diverse range of users [34]. The rapid
growth of generative AI [42], fueled by the sheer size of compu-
tation resources in the cloud, has been transforming the voice
assistant into a more seamless and user-friendly user interface.

While the voice assistant offers flexibility to mobile users, the
process of activating it remains inconvenient due to its heavy de-
pendence on hand interventions, particularly on earphones [2].
Taking Siri [70] as an example, the user has to press and hold the
talk/answer button on earphones for a few seconds until hearing
the Siri beep1. This precaution is taken to avoid unintended acti-
vation of Siri by someone else nearby. Yet, this would divert the
user’s attention from their current focus, negatively impacting the
user experience. This is especially notable in situations where the
user’s hands are occupied, as illustrated in Figure 1(a).

Notice that, in this paper we ask a simple question: is it possible to
enable hands-free VA activation on earphones? An affirmative answer
would enhance the accessibility of voice assistants by enabling
individuals occupied with other tasks to interact with their devices
conveniently. In addition, it can improve safety by reducing the
need for hands-on device manipulation, particularly in situations
where manual interaction may be risky such as driving or cycling.

Nevertheless, to harvest the aforementioned benefits, we have
to take into account the following system requirements.

• Low False Positive Rate. A hands-free voice activation
service stays in idle listening mode continuously, responding
whenever a voice command is initiated. To achieve a good
user experience, this service should minimize false positives,
ensuring that it doesn’t get triggered by ambient voices.

• Agile and Low-Power. The proposed service should re-
spond to human speech agilely, with minimum or unno-
ticeable latency. Moreover, as an always-on service running
on power-constrained mobile devices, the proposed system
design should be low-power.

• Privacy-preserving. Voice data should be stored securely,
and users should have control over their data. Besides the
necessary voice commands for awakening corresponding

1 Similarly, current wireless earbuds, including Google pixel-bud, Apple AirPods, and
Bose’s QC35 [6, 69, 70], all require users to activate the voice assistant either by taping
a touch sensor [1] or holding an action button [73].
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services, other audio data should avoid being recorded on
the smartphone to minimize the risk of privacy leaks.

We present EarVoice, a mobile service that explores the distinction
between the acoustic air channel and the in-body bone-conduction
pathway formed in human speech to enable accurate, agile, and low-
power hands-free voice activation, all in a privacy-preserving way.
Our system works with everyday earphones (e.g., those earphones
cost a few US dollars) without breaking their structures and requires
neither in-ear microphones [22, 29, 33, 40, 41] nor dedicated IMU
sensors that are only available on those pricey ANC earphones.

Motivated by HeadFi [20], EarVoice repurposes the earphone
speaker into a microphone for wakeup words (e.g., "Hey Siri") de-
tection. This allows mobile users to wake up their voice assistant
using earphones even without a microphone2. To detect whether
the recorded sounds are human speech or ambient noise, and fur-
thermore, to distinguish if the detected speech originates from the
primary user (i.e., who wears the earphone), EarVoice explores
an observation that the speech of the primary user reaches the
earphone’s speaker transducer through not only the conventional
air channel but also via the human body channel, whereas the
nearby speaker’s speech solely propagates through the air channel
to the earphone speaker transducer, with significant attenuation.
This discrepancy in the audio pathways is reflected in the recorded
audio spectrum, with low-frequency signals originating from the
primary speaker’s vocal cord vibrations being present, while the
low-frequency voice components of a nearby speaker are not. Ear-
Voice takes advantage of this unique frequency disparity to detect
whether it is the primary user or someone else speaking nearby.

However, the distinct in-body bone-conduction pathway, cou-
pled with the suboptimal frequency response of speaker transducers
functioning as microphones, leads to a significant power loss in
the higher-frequency speech components. The occurrence of such
high-frequency deafness distorts spoken wakeup words severely,
consequently diminishing the accuracy ofwakeupword recognition.
To address this challenge, we propose a wakeup word enhancement
design to compensate for the high-frequency energy loss in the
speech recording. This approach takes a MEMS microphone record-
ing of the wakeup word (e.g., “Hey Siri") as the template, extracting
its high-frequency components ranging from 2 to 8 kHz, and past-
ing it to the voice recording. As wakeup recognition systems are
primarily designed to interpret content-dependent elements of hu-
man speech such as vowels and consonants as opposed to human
speaker-dependent features like tones, prosody, and intonation, the
combined signal can be successfully recognized even though its
frequency components come from different individuals.

Nevertheless, as different individuals speak the wakeup word
at different speeds, frequencies, and loudness, blindly copying and
pasting without considering the discrepancy between the speech
recording and the template can lead to the misalignment of critical
formants in the combined audio signal and further undermine the
wakeup word recognition. To address this issue, we propose an

2 The line-in/boom microphones may appear on some conventional earphones and can
pick up human voices. However, they usually have no direct contact with the human
head and thus cannot differentiate between the primary user and nearby individuals.

Figure 2: (a): human speech production. (b): two human
speech transmission channels. 1○ air channel, 2○ in-body bone-
conduction audio pathway.
efficient signal processing algorithm to align these two signal com-
ponents along the time, frequency, and amplitude domain, ensuring
two frequency components are aligned in their combined form.

EarVoice functions as a hybrid signal-processing pipeline with
primary functions running on a low-power donglewhile thewakeup
word recognition runs on the smartphone. The dongle transforms
the earphone speaker into a microphone, detects the human voice,
distinguishes whether it originates from the primary user, and fur-
ther enhances the speech quality. By exclusively forwarding only
the legitimate voice commands from the dongle to the smartphone,
this gating approach not only prevents inadvertent disclosure of
ambient conversations but also minimizes unnecessary wakeup
word recognition on the pairing device, thereby conserving power.

We have implemented a prototype of EarVoice’s dongle on a 4-
layer printed circuit board (PCB). It consists of a low power ESP32
MCU, an audio codec chip, and other peripherals to enable the
functionality. The total cost for this dongle is around 8.3 US dollars.

We summarize our contributions below:
• We identified that the close contact between the earphone
speaker transducer and the human skin offers a unique op-
portunity to sense the vocal cord vibrations of the user who
spoke, enabling us to tell whether the voice is coming from
the primary user or others in the vicinity. We then proposed
a lightweight signal processing algorithm that explores this
opportunity to enable hands-free voice assistant activation.

• We designed a gated signal-processing pipeline that can
accurately detect, differentiate, and further enhance the in-
complete voice command captured by the earphone speaker
transducer, all in a low-power and privacy-preserving way.
This design holds the potential to be deployed on different
types of earphones.

• We implemented EarVoice on a PCB board and conducted ex-
tensive experiments in both controlled and uncontrolled en-
vironments. The results demonstrated that EarVoice achieves
an overall wakeup recognition accuracy of 90% across differ-
ent real-world scenarios, which is on par with the high-end,
multi-sensor fusion-based Airpods Pro earbud.

2 SPEECH PRODUCTION PRIMER
Before we describe the potential of the earphone’s speaker trans-
ducer for hands-free voice assistant activation, we first explain how
human speech production works.
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Figure 3: Spectrogram (left) and spectral envelope (right) of
the vowel sound /i/. The first three formants are denoted as F1,
F2, and F3. This audio signal is recorded by a MEMS microphone.

As illustrated in Figure 2(a), the production of human speech
involves intricate coordination between multiple articulatory or-
gans in the vocal system, including lungs, vocal cords (a.k.a. vocal
folds), and vocal tract3. Specifically, the lungs provide the essential
air source required for vocalization. This air subsequently passes
through the vocal folds to generate a voice source and is then mod-
ulated by the vocal tract to produce output speech [38]. Vocal folds
generate speech signals that are voiced by dynamically controlling
the airflow originating from the lung, alternatively blocking and
permitting it. On the contrary, if vocal folds do not vibrate, airflow
from the lungs will be manipulated directly by the vocal tract to
produce unvoiced signals, such as consonant sounds like /f/, /r/, etc.

The voiced signals consist of two components. i): vowels and
some consonants that own high energy pulses in the frequency
domain [58]; ii): the fundamental pitch F0 and its harmonics. The
frequency components that determine the intelligence of speech
words are called formants (spectral resonances) [35]. The first
formants in a sentence are usually within 300–2800Hz frequency
band, forming the pronunciation of vowels. The follow-up formants
stay in a higher frequency band above 3000Hz, as shown in Figure 3.

3 OPPORTUNITIES AND CHALLENGES
Facilitating hands-free voice assistant activation on earphones re-
quires the agile detection of human voice, precise identification of the
primary speaker, and robust recognition of the wakeup word hereafter.
We have two observations contribute to achieving these goals: the
first a reflection on recent research, the second a consequence of
unique voice channels:

(1) Recent work has demonstrated that the speaker transducer
on commodity earphones can be used as a microphone for
acoustic signal reception [9, 12, 20]. This leaves us an oppor-
tunity to capture spoken words on all types of earphones
without requiring a microphone.

(2) The primary user’s voice reaches the earphone via both an air
channel and an in-body channel, while a nearby user’s voice
only travels through the air channel. Due to the earphone’s
obstruction, only a small fraction of the voice energy from
the nearby user reaches the earphone’s speaker. In contrast,
the primary user’s voice arrives at the earphone speaker with
less attenuation through the in-body channel, providing us
with an opportunity to distinguish the speaker (§3.1).

In the following sections, we assess the practicality of these
opportunities and identify potential challenges.

3 Vocal tract is the area from the nose and the nasal cavity down to the vocal cords,
including the throat, mouth (e.g., tongue, teeth, lip), nasal cavity, and facial move-
ment [79].

Figure 4: Feasibility study: speech measurement from (a): a
primary speaker; and (b): a nearby speaker.
Table 1: Wakeup words recognition accuracy on five main-
streaming voice interfaces. Ten volunteers are invited to articu-
late three wakeup words 10 times each.

ASR Earphone speaker transducer MEMS Microphone
Google API [25] 9% 82%
DeepSpeech [3] 1% 58%
iFLYTEK [30] 18% 76%
SpeechBrain [57] 1% 66%
Whisper [56] 31% 93%

3.1 Identifying the Primary Speaker:
An Opportunity

Voice fingerprint [23] is proposed to identify the registered primary
user and might help determine whether the primary user is interact-
ing with Siri or if someone else nearby is speaking. However, such a
mechanism is prone to various security threats in real life, including
impersonation, voice synthesis [47], and replay attacks [21, 51].

Instead of applying fingerprint technology, we found that the
distinct speech propagation channels between the primary speaker
and nearby speakers offer us another opportunity to distinguish
speakers using earphones. Specifically, the speech of the primary
user reaches the earphone’s speaker transducer through not only
the conventional air channel but also via the human body channel,
as depicted in Figure 2(b). In contrast, when it comes to human
speech from a nearby non-primary speaker, it solely propagates
through the air channel to the earphone speaker transducer. Below
we elaborate on these two channels:

(1) Air channel for voice propagation. For both the primary
speaker and nearby speakers, the voice signal emanating
from their mouthwill propagate through the air channel. The
earphone’s speaker transducer captures this signal when the
sound reaches the earphone, as denoted by 1○ in Figure 2(b).

(2) Body channel for the propagation of articulatory organ
vibrations. For the primary speaker, the vibrations from
her articulatory organs, such as the vocal cord and tract,
would travel through the human body and ultimately reach
the ear canal. Given the fact that the earphone transducer
maintains close contact with the human ear, the speaker
transducer is highly likely to detect these vibrations through
bone conduction. Prior works have demonstrated so on in-
ear microphones [5, 21] and IMUs [26].

We conducted benchmark studies in a controlled environment
to assess whether human speakers are differentiable based on these
two channel propagation characteristics.
Setups. We invited two volunteers, Alice and Bob, to conduct the
experiment. As shown in Figure 4(a), Alice wears the earphones and
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Figure 5: We record two distinct wakeup words “Hey Siri” and “OK Google” using the pseudo-microphone and a MEMS
microphone, plotting the spectrogram of the audio recordings. Pseudo-microphone recordings of (a) “Hey Siri” and (c) “OK Google”.
MEMS microphone recordings of (b) “Hey Siri” and (d) “OK Google”.

Figure 6: The spectrogram and formants of the vowel sound
/i/ captured by the earphone speaker.

acts as the primary user to activate the voice service by uttering
"Hey Siri" at her preferred pace and intensity. We plot the frequency
spectrogram of the signal recorded by the earphone speaker trans-
ducer in the range between 0 and 8kHz. In Figure 4(b), Bob takes on
the role of the primary user, wearing the earphones and remaining
stationary, while Alice acts as a nearby speaker, uttering "Hey Siri"
at the same pace and intensity. To maintain a consistent over-air
signal attenuation, the distance between Alice and Bob is kept iden-
tical to the distance from Alice’s mouth to her ear. The earphone
captures the voice from Alice via only the air channel.
Results. Upon comparing these two spectrograms, we observe
distinct energy gaps (around 20dB), especially when we zoom in
to the 0–1000Hz frequency range. This frequency range is where
vibrations originating from the articulatory organs are prominent.
More specifically, these articulatory organ vibrations are primarily
stemming from the vocal cords and vocal tract. Vibrations related
to the vocal tract, such as movements of the lips, tongue, and facial
features, typically fall within the 0 to 100Hz range [24, 48]. In
contrast, vocal cord vibrations span the frequency range of 100
to 1000Hz, with variations depending on genders, i.e., around 90–
500Hz for males while 150–1000Hz for females [68, 71].

The result indicates that the speaker transducer can capture the
low-frequency signals stem from the primary speaker’s vocal tract
vibrations, but not from the nearby speaker. This is reasonable as
both the vocal cord and tract activity travel through the body chan-
nel (in the form of bone conduction) to the earphone diaphragm,
which suffers less attenuation compared with the air channel [32].

3.2 Wakeup Word Recognition: Challenges
The preceding section highlights the potential for distinguishing
the primary speaker with dumb earphones. However, when we
tested these captured wakeup words with five mainstreaming voice
assistant systems, we discovered that all of them achieved very low

Figure 7: Measurement setup (left) and Frequency response
curve of six pairs of earphones (right). We follow [10, 19] to
play a probing signal across the frequency band to the earphone
with a loudspeaker in an anechoic chamber.
word recognition accuracy4, ranging from 1% to 31%. In contrast,
the speech recorded by a commercial MEMS microphone achieves
a recognition accuracy between 58% and 93%, as shown in Table 1.

To understand the performance gap, we examine the waveform
and spectrogram of these voice recordings. As shown in Figure 5,
the high-frequency components beyond 2000Hz are largely ab-
sent over our speaker recordings, whereas a MEMS microphone
preserves good frequency component of the signals on the high
frequency. We found the absence of high-frequency components
significantly impacts the perception of formants of the wakeup
words. For example, in the case of the vowel sound /i/ shown in
Figure 6, due to the high-frequency deafness, only the first formant
below 2kHz is observed in the earphone speaker recording while
the subsequent formants above 2kHz are absent (§2). Compared
with the MEMS microphone recording in Figure 3, the absence of
these critical formants in the earphone recording leads to confu-
sion in the input feature for speech recognition, ultimately causing
wakeup word recognition failures.

A follow-up question arises – what is the reason behind the ab-
sence of high-frequency components beyond 2000Hz in our speaker
recordings? Inspired by previous works [10, 58], we suspect that
the speaker hardware imperfection is the root cause of this high-
frequency deafness. Hence we measure the frequency response of
the earphone speaker when using it as a microphone in an anechoic
chamber shown in Figure 7(a).

Figure 7(b) shows the frequency response of six pairs of ear-
phones across over-, on-, and in-ear types. We observed that the
frequency response of all six pairs of earphones declines as the
frequency increases. Within the 0-2000Hz frequency range, the

4 We calculate the word level recognition accuracy 𝐴𝐶𝐶 according to the Equation
𝐴𝐶𝐶 = 1 − 𝐷+𝑆+𝐼

𝐷+𝑆+𝐶 , where 𝐷 , 𝑆 , 𝐼 and𝐶 represent the number of deletions, substitu-
tions, insertions, and correct words.
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Figure 8: An illustration of the enhancement of the joint speech detection and primary user identification.
speaker maintains a high frequency response, which facilitates the
accurate capture of vocal cord vibrations. However, as the frequency
continues to rise, the speaker’s frequency response decreases sig-
nificantly, with an average attenuation of 30 dB. Consequently, the
speech in this frequency range experience substantial attenuation,
leading to reduced speech recognition accuracy.

4 DESIGN
We propose EarVoice to harvest the opportunities aforementioned
and tackle the technical challenges identified in the preceding
section. EarVoice consists of two primary functionalities, namely,
speech detector and primary user identification (§4.1), and wakeup
word enhancement (§4.2).

4.1 A Lightweight Speech Detector
This design component strives to promptly detect the presence of
human speech from the audio recordings and determine whether it
is its own user speaking or someone else nearby.

Existing speech detectors such as webrtc-vad [63] work in two
steps. It first sends the audio recording to an energy detector to
locate potential human speeches, and then feeds these high-energy
pitches to a GMM model to tell whether they are human speeches
or ambient noises. Although the energy detector is low-power [44],
it analyzes energy levels of audio recordings across a wide fre-
quency range spanning from 80Hz to 4000Hz, in which ambient
noise frequently manifests and our pseudo-microphone (i.e., using
the earphone speaker as a microphone) conceals (§3.2). This can
result in frequent false-triggering of the succeeding GMM-based
speech detector and lead to an increase in system power consump-
tion. Furthermore, existing speech detectors lack the capability to
identify whether it is its own user talking but instead transmit
all detected speech to the subsequent speech recognition module,
which leads to energy wastage.

4.1.1 Joint speech detection and primary user identification. Ear-
Voice instead leverages the unique in-body signal propagation
channel to simultaneously identify human speech and the primary
speaker through the use of only the power detector. It achieves so
by detecting energy peaks specifically within the lower 1000Hz
frequency band. This particular frequency range is primarily as-
sociated with the articulatory organs [71], making a strong en-
ergy peak within this band a reliable indicator of human speech
presence. Furthermore, since speech from a nearby speaker propa-
gates through an in-air channel, resulting in significant attenuation
within this lower frequency band (as discussed in §3.1), we can
distinguish whether the detected speech belongs to the primary

speaker or someone else speaking nearby by analyzing the energy
peaks within the frequency range of 0 to 1000Hz.

Our low-frequency energy detector proceeds in two steps: pre-
processing and energy profiling.
Pre-processing. Let 𝑥 (𝑡) be the audio signal recorded by the ear-
phone’s speaker transducer. We first filter 𝑥 (𝑡) with a second-order
Butterworth low pass filter (LPF) with a cutoff frequency of 1000Hz
to eliminate the out-band noises which are largely likely to be pol-
luted by the ambient environment noises [11]. As the user’s motion
noise (primarily below 50Hz [41, 74]) may still be preserved in the
filtered signal, We thus adopt another Butterworth high pass filter
with a cutoff frequency of 50Hz to remove human motions in that
frequency band. Furthermore, due to the recorded speech energy
being varied across different earphones and users, we normalize
the energy of the filtered 𝑥 (𝑡) by scaling it up to the range of [-
4000, 4000] (dtype=int16), following the same energy normalization
parameter utilized in webrtc-vad [63]. The signal normalization
would not affect the relative amplitude and frequency distribution
of the speech signal.
Per-frame energy profiling. We next locate possible voice activity
on the time domain by dividing speech signals into time frames.
Due to speech signals being quasi-stationary within a short time(2-
50ms) [81], we divide𝑥 (𝑡) into 20ms frames and calculate the energy
of each frame 𝑖 as follows:

𝑆𝑖 =
∑︁

|𝑥 (𝑛) |2, 𝑛 ∈ 𝑓 𝑟𝑎𝑚𝑒𝑖

where 𝑥 (𝑛) are the data samples within frame 𝑖 . EarVoice monitors
the fluctuations in energy between consecutive frames and sends
the audio frame(s) to the primary user identification module if their
energy surpasses 1.2 times the average energy, denoted as 𝑆𝑖 >

1.2 · 𝑆𝑎𝑣𝑔 . The value of 𝑆𝑎𝑣𝑔 is regularly updated by incorporating
new frames while excluding those that have been identified as
containing speech. The hyper-parameter 1.2 is obtained through
our benchmark studies in various noise level settings.

4.1.2 Enhancement. The aforementioned procedure can detect the
primary user’s speeches with high accuracy because in most cases
only the speech from the primary user can cause high energy peaks
in the frequency below 1000Hz. However, we also noticed cases
where the strong ambient noises that occupy a wide frequency
band (e.g., engine, wind, and road noises while driving) can fool this
energy detection module, leading to false triggers of the succeeding
wakeup word recognition module that is usually power hungry.

To minimize the occurrence of false activation of the wakeup
word recognition module and reduce the associated power con-
sumption, we propose to extract articulatory features from the
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Figure 9: (a) Reconstructed F1-F3 formants through harmonic
reconstruction. Google API cannot recognize this keyword.
(b) The groundtruth F1-F3 formants recorded by a MEMS
microphone. GoogleAPI can successfully recognize it as “Hey
Siri".

audio recording to validate whether the detected signal represents
human speech rather than mere background noise. More precisely,
we segment the audio into discrete frames, where we detect the 𝐹0
pitch (i.e., the fundamental pitch) frequency within each frame and
assess the consistency of 𝐹0 pitch across successive frames. If the
signal corresponds to human speech, the 𝐹0 pitch should exhibit
relatively stable continuity across these frames.

We choose 𝐹0 pitch as our focus for several reasons. Firstly,
𝐹0 pitch is the essential articulation frequency determined by the
rate at which the vocal cord vibrates [67] and is controlled by the
tension and length of the vocal cords. As these vibrations emanate
from the articulatory organs and travel through to the ear canal,
the 𝐹0 pitch carries the most potent reference of audible energy.
Secondly, the frequency of 𝐹0 pitch is less susceptible to certain
types of interference compared with other vocal frequencies. For
instance, low-frequency vocal tract resonances may be confounded
by motion artifacts, and high-frequency harmonics can be masked
by ambient noise.
F0 pitch detection. Motivated by [8, 14], we first obtain the spec-
trogram of the audio signal using Short Time Fourier Transform
(STFT) and then detect the 𝐹0 pitch on the spectrogram by mea-
suring the maximum coincidence of harmonics. The key insight
is the spectrogram of a speech will exhibit prominent peaks at
frequencies that are integer multiples of the 𝐹0 pitch, stemming
from the harmonics present in the speech signal. Building on this,
we establish a range of potential 𝐹0 pitches, ranging from 90Hz
to 250Hz5. We then aggregate the power associated with each of
these candidate pitches and its corresponding harmonics within
the 1000Hz frequency range. In each time frame, we identify the
pitch with the highest cumulative power as our estimated 𝐹0 pitch.
Figure 8 illustrates this process.

Finally, we remove the noise on other frequencies to improve
the SNR of the primary articulatory feature (𝐹0 pitch) and feed the
nullified spectrogram to a Support Vector Machine(SVM) for classi-
fication. Because the classifier focuses on detecting the continuity
of the F0 pitch, a feature that doesn’t vary significantly between
different users, there’s no necessity to amass a diverse set of train-
ing data from a large population. Moreover, the SVM’s lightweight
design ensures that it is computationally efficient.

It’s important to note that this enhancement module is not in
a constant state of activation. Instead, its activation is determined
by per-frame energy profiling (§4.1), which calculates the ambient

5 Studies show that the 𝐹0 frequency is around 90–180Hz for males and 165–255Hz for
females [58]. We thus set the frequency band of candidate pitches to [90Hz, 250Hz]
for running the 𝐹0 estimator.

Figure 10: Spectrogram and recognized word of each audio
clip. (a) the combined signal can be successfully recognized by
Google API. (b) the speech recording with high-frequency deafness
was falsely recognized as “hi babe” by Google API. (c) The high-
frequency component from a template cannot be recognized by
Google API. (d) The combination of a non-wakeup word and the
high-frequency template cannot be recognized by Google API.

environmental energy level of each time frame. The enhancement
module is activated only when the ambient energy level exceeds
a predefined threshold, established based on a computation over
five frames. This strategic approach allows EarVoice to activate the
enhancement module in noisy environments to bolster accuracy,
while also deactivating it under quieter conditions to conserve
power.

4.2 Accurate Wakeup Word Enhancement
Once the audio speech is detected coming from the primary user, it
will be sent to the wakeup word recognition module. However, as
demonstrated in §3.2, directly sending the voice recording to the
wakeup word recognition module associated with existing voice
assistants encounters significant errors due to the absence of critical
high-frequency components. We propose a lightweight wakeup
word enhancement algorithm to address this issue.

4.2.1 The failure of harmonics reconstruction. Our initial attempt
is to reconstruct the audio’s high-frequency spectrogram (2–8 kHz)
using their low-frequency (0–2 kHz) components that are available
on the audio recordings. The opportunity here is the fundamental
frequencies (e.g., 𝐹0 pitch) in human speech manifest in higher
frequency bands as harmonics (e.g., 2 ∗ 𝐹0, 4 ∗ 𝐹0, ...). Following
prior works [53, 58], we synthesize harmonics on 2-8kHz using the
fundamental frequency components and further decay the energy
across frequencies, ensuring their smoothness. However, as we
sent the reconstructed audio to Google API for recognition, we
found the wakeup word recognition accuracy did not get improved,
maintaining at around 7%. We also fed the reconstructed audio clips
released by [58] to Google API and found that these audio clips
achieve similarly low accuracy.

After carefully comparing the reconstructed signal spectrogram
shown in Figure 9(a) with the groundtruth shown in Figure 9(b),
we found harmonics reconstruction struggles to reconstruct the
formants within the higher frequency band of 2-8 kHz. This is be-
cause the formants are not solely determined by the fundamental
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Figure 11: (a) syllables and (b) formants alignment.
frequency or its harmonics. It is also closely related to the phys-
ical shape and size of the user’s vocal tract (§2). Accurate recon-
struction of formants would require detailed information about the
vocal tract’s shape and size, which are typically achieved through
complex acoustic modeling or data-driven approach [37] that are
computationally intensive.

4.2.2 Our solution: copy, paste, and adapt. To mitigate the high-
frequency deafness observed in the speech recording, we propose
to use a MEMS microphone’s pre-recording of the wakeup word
(e.g., “Hey Siri") as the template, extracting its high-frequency com-
ponents ranging from 2 to 8kHz, and pasting it to the speech record-
ing, as shown in Figure 10(a). This is based on an observation that
when the speech recording is a wakeup word, the combined speech
signal can trigger the voice assistant even though its low- and high-
frequency components originate from different human speakers.

The rationale is that speech recognition systems are primar-
ily designed to interpret content-dependent elements of human
speech, such as vowels and consonants, which are characterized
by these crucial formants. These systems are tuned to focus less
on human speaker-dependent features like tones, prosody, and in-
tonation, aiming to enhance the scalability of speech recognition
performance [50].

Conversely, due to the lack of fundamental pitches and frequency
components below 2kHz, the high-frequency component from the
MEMS microphone’s recording alone, as shown in Figure 10(c),
cannot be successfully recognized by the wakeup word recognition
module. Similarly, due to the mismatch between the low-frequency
and high-frequency components, the combination of a non-pickup
word speech recording and a pickup word template, also fails to
trigger the voice assistant, as shown in Figure 10(d).

Yet, implementing the copy-and-paste approach poses a consid-
erable challenge because of the diverse nature of human speech,
including variations in pace, pitch, intensity, and vocal patterns. Ad-
ditionally, a single user might pronounce the same wake-up word
very differently at different occasions. Blindly pasting the high-
frequency component of the template keyword to the speaker’s
speech recording can disrupt the alignment of critical formants
in the combined audio signal, lead to the mismatch of the energy
component in the low- and high-frequency component, and further
undermine the wakeup word recognition.

To address this challenge, we propose to align the speech record-
ing and the keyword template across three distinct dimensions:
time, frequency, and energy. This alignment ensures that the har-
monics as well as the formants in the high-frequency band are
well aligned with the audio components in the low-frequency band.
Next, we detail this alignment.
Step 1. syllables alignment in time domain. A syllable is a
fundamental unit in organizing speech sounds for pronunciation in

Table 2: Comparision of word recognition accuracy. (a): with-
out copy-paste-adapt; (b): with copy-paste, no adapt; (c): with copy-
paste-adapt; (d): with copy-paste-adapt on non-wakeup word.

Setup (a) (b) (c) (d)
Recog. Acc. 11% 15% 89% 20%

linguistic [4]. Variations in speech pace among different users can
lead to discrepancies in voice duration and the number of syllables.
EarVoice first aligns captured speech signals with the template by
stretching/squeezing the template audio on a syllable basis. The
primary challenge in this process lies in accurately detecting the
boundaries of syllables in the speech recording and adjusting the
template’s voice speed to match that of the user, especially in the
presence of background noise.

To overcome this challenge, we first calculate the energy of
the ambient background noise in the speaker’s audio recording
and then subtract this noise to enhance the speech signal SNR,
making the boundary more distinct. After that, we apply a pitch
identification algorithm [8] to the speech recording to pinpoint
the F0 fundamental pitch. This F0 pitch information is used to
determine the number and location of syllables and the stretch
ratio. The voice stretch is applied on a per-syllable basis. If EarVoice
detects discrepancies in the number of syllables between the speech
recording and the template (due to variations in speech pace and
pronunciation habits), EarVoice merges syncopal syllables (e.g., /si-
ri/ ) into a single syllable for alignment, as depicted in Figure 11(a).
Step 2. formants alignment across the audible band. After
syllable alignment on the time dimension, we next align the for-
mant components on the spectrogram. Users differ in their vocal
cords and vocal tract structures, and this discrepancy can result
in distinct formant location relationships in the spectrogram. For
example, females typically possess a higher 𝐹0 pitch compared to
males, causing their 𝐹1, 𝐹2, and 𝐹3 formants to be noticeably higher.
Directly pasting the 𝐹2-𝐹3 formants template from a female to the
speech recording from a male can result in frequency misalign-
ment, disrupt the inherent relationships among the formants, and
ultimately result in errors in wakeup word recognition.

We propose to align the frequency formants on an STFT basis.
As illustrated in Figure 11(b), we divide the audible band signal
into a 2D time-frequency matrix. Each time frame in the matrix
spans 20 ms as the audio sound is quasi-stationary over a 2-50 ms
period [11]. Following the segmentation, we extract the spectral
envelope of each time frame. As shown in Figure 3, the spectral
envelope is an important cue for the identification of voice sounds
and the characterization of formants (spectral resonances) [55]. We
then align the location of the 𝐹1 formant (< 2kHz) in the spectral
envelope by determining a shift factor. This shift factor is then
adapted to the higher 𝐹2-𝐹3 formants in the template signal. Sub-
sequently, the adapted formant signal is copied onto the speech
recording for replacement. EarVoice adopts the linear prediction
spectral envelope [43] in the implementation.
Step 3. Energy alignment. The last step is to align the energy be-
tween the template and the speech recording. The speech loudness
may change over individuals – combining the template and the
speech recording in different loudness would inevitably harm the
wakeup word recognition accuracy. To solve the issue, we first cal-
culate the average energy level of the high-frequency component,
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Figure 12: The schematic of EarVoice.

Figure 13: EarVoice supports wireless (left) and wired (right) connection. Figure 14: Earphones.

denoted as 𝑃ℎ𝑖𝑔ℎ , and the low-frequency component, denoted as
𝑃𝑙𝑜𝑤 , within the template audio. We next compute the energy level
of the filtered speech recording in the low-frequency band 𝑃 ′

𝑙𝑜𝑤
.

Finally, we adapt the high-frequency component of the combined
signal using the following equation: 𝑃 ′

ℎ𝑖𝑔ℎ
= 𝑃ℎ𝑖𝑔ℎ ∗ (𝑃 ′

𝑙𝑜𝑤
/𝑃𝑙𝑜𝑤).

Result. We invite a volunteer to evaluate the effectiveness of this
algorithm. The volunteer is instructed to speak the wakeup word
“Alexa” 100 times and random non-wakeup words 100 times at her
normal communication loudness. The word recognition accuracy
is shown in Table 2. We observe that our algorithm, denoted as (c),
can effectively activate voice assistants with an 89% successful rate.
In contrast, the success rate drops to only 11% without applying
our algorithm, denoted as (a). For comparison, direct copy-and-
paste has a relatively low SR recognition rate (15%) as directly
applying the template on a high frequency brings in misalignment,
as shown in (b). We also conducted experiments on applying the
template to other non-wakeup words, denoted as (d). We found that
these non-wakeup words cannot efficiently activate the SR, which
demonstrates the effectiveness of our algorithm.
5 IMPLEMENTATION
EarVoice’s signal processing includes a light-weight hardware cir-
cuit that transforms the earphone speaker into a microphone, an
energy-efficient algorithm that detects human speech and distin-
guishes whether it is the primary user speaking, as well as a signal
enhancement algorithm that improves the quality of wakeup word.
All these signal modules run on a dongle. Figure 13 shows the Ear-
Voice prototype, which supports both wireless connection (through
Bluetooth) and wired connection (through a 3.5mm TRRS audio
cable).

This implementation possesses two advantanges. First, because
the voice detection and primary user identification features are
implemented in the plug-in dongle, the earphone transducer doesn’t
send all captured audio streams directly to the pairing device (such
as a smartphone or laptop) for further processing. Instead, the audio
data is processed locally on the dongle, and only legitimate voice
commands from the primary user are forwarded to the backend

for further processing. Second, this gating approach not only helps
prevent unintended disclosure of ambient conversations but also
unnecessary acoustic signal processing on smartphones, and thus
reduces power consumption.
Hardware integration. The EarVoice dongle comprises two 3.5
mm audio jacks, resistors in the form of a Wheatstone bridge, a
power amplifier INA126, an audio codec chip ES8388, an onboard
computation MCU ESP32-WROVER-E with BLE radio, a UART
chip CP2102N for programming, and other peripheral electronic
components. The detailed schematic is shown in Figure 12. The size
of the current prototype is 6cm×4.5cm. It costs approximately 8.3
USD. Its form factor can be further reduced by adopting a stretchable
PCB. We anticipate that this design can be seamlessly incorporated
into mainstream True Wireless Stereo (TWS) earbuds by placing
the miniaturized circuitry between the transducer and the audio
chip, as suggested by previous work [46].

6 EVALUATION
Data collection. We recruited 23 volunteers (16 males, and seven
females, between the ages of 18–54 years old) for the experiment
under the approval of the university’s Internal Review Board (IRB)
protocol. The volunteers include three native speakers and 20 for-
eign nationals from different countries with different native lan-
guages, including Chinese, Hindi, and French, respectively. The
volunteer wears EarVoice and speaks three types of wakeup words,
including “Alexa”, “ok Google”, and “Hey Siri”. The audio sampling
rate is set to 16kHz. We adopt Google speech recognition API [25]
as the keyword spotting model in the evaluation.
Earphone configurations. Voice data are collected using 13 pairs
of earphones with different types (e.g., over-ear, on-ear, and in-ear),
prices (12-300 US dollars), and transducer sizes. Figure 14 shows
the snapshot of these 13 pairs of headphones.
Baseline. We evaluate EarVoice against the Airpods Pro to assess
its usability. The Airpods Pro takes leading position among com-
modity earbuds, particularly excelling in speaking sound quality.
This superiority is achieved through the utilization of advanced
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Figure 15: (a) FRR and (b) FAR across 23 subjects (P1 refers joint speech and primary speaker detection (§4.1.1); P2 refers
pitch detection-based enhancement (§4.1.2)). (c) Word recognition accuracy for 23 individuals. (d) FAR of human-based and
machine-based spoofing attacks, respectively. (e) Impact of age and gender.
sensor modalities, including the voice accelerometer and multi-
microphone-based beamforming. In contrast, EarVoice only adopts
the speaker transducer as the basic signal receiver. In our evaluation,
we connect Airpods Pro to back-end voice assistant Siri, Google
Assistant, and Amazon Alexa to evaluate the success rate for each
keyword.
Metrics. We adopt three metrics to evaluate EarVoice:

• False Acceptance Rate (FAR). This metric quantifies the
frequency that EarVoice erroneously activates the voice as-
sistant over the total number of attempts. A high FAR score
can lead to an unsatisfactory user experience and inadequate
privacy preservation [80].

• False Rejection Rate (FRR). This metric evaluates the
frequency that EarVoice does not activate the voice assistant
when the primary user intent to invoke it, over the total
number of attempts. A high FRR suggests EarVoice may
encounter difficulties in freely accessing the voice assistant
service.

• Success Rate (SR). This metric quantifies the rate of suc-
cessful execution over all attempts. One successful execution
is counted only when the corresponding wakeup word is
successfully recognized by the ASR.

6.1 In-lab Study
We first examine the effectiveness of EarVoice’s front-end and back-
end design in a controlled environment.
Experimental procedure. The study is divided into two sessions.
In the first session, the primary subject (who wears the earphone)
is instructed to utter the wake-up words at her preferred pace
and intensity. Each command was uttered 20 times per user with
different earphones. We then compute the false rejection rate (FRR).
In the second session, we let the primary subject stay silent and
invite another volunteer to speak the same wake-up word near the
primary subject, playing the role of a nearby individual shown in
Figure 4 (b). We then calculate the false acceptance rate (FAR). Each
session takes around 30 minutes. We train the SVM model in §4.1.2
with the collected two-session dataset. Specifically, we use subject
1’s voice for training the SVM and test it on the other 22 unseen
participants. And we train a second SVM on another unseen user
(e.g., subject 2) to evaluate the FAR and FRR of subject 1. The input
is the nullified spectrogram of the voice signal and the output is
the classification result (i.e., 0/1: represent primary user/others).

All experiments are conducted in a quiet lab environment with an
ambient noise level at 45 dBSPL on average.
• Primary speaker identification. We examine the overall accu-
racy of the primary speaker identification in EarVoice. The evalu-
ation is conducted in two phases. In the first phase (P1), we only
apply the time framing identification method (§4.1.1) and examine
the FRR and FAR results. As shown in Figure 15 (a) and (b), we
observe a consistently low average FRR (0.8%) but a higher aver-
age FAR (14.3%) across the 23 subjects. This outcome is expected
since time framing primarily detects energy presence, not specific
user identification. Afterward, we incorporate the pitch detection
( §4.1.2) and observe significant improvements. The FAR drops
to 2.8%, while the FRR slightly increases to 1.7%. These findings
demonstrate the effectiveness of our pitch detection algorithm.

Taking a further scrutiny of these results, we find that subjects
9, 10, 18, and 21 exhibit relatively higher FRR and FAR (e.g., >3%).
This discrepancy can be attributed to the inadequate contact of
earphones with the subjects’ skin, impacting the propagation of
vocal cord vibrations through bone conduction and resulting in an
increased FRR. Simultaneously, this lack of close contact allows the
speaker transducer to capture speech from nearby users, contribut-
ing to a higher FAR. Additionally, subjects 14, 19, and 20 exhibit
a higher FRR but maintain a lower FAR in comparison to others.
Further investigation into the raw audio recording of these subjects
reveals that their voice volume is lower than that of other subjects,
consequently leading to more frequent rejections by the EarVoice.

Spoofing attacks. Safeguarding against voice attacks and elimi-
nating false positives is crucial for voice assistants. To further verify
the effectiveness of EarVoice on primary speaker identification and
the possibility of false triggers. We emulate two types of spoofing
attacks, including a human-based and a machine-based reply attack.
In the human-based attack, We invite a participant to wake up
voice assistants with different volumes near the true primary user
who wears the earphone. In the replay attack, we pre-record the
primary user’s voice and play it with a loudspeaker with different
volumes near the earphone. The distance between the attacker and
the earphone is kept to 50 cm.

Figure 15 (d) shows the result. Overall EarVoice demonstrates
a promising defensive capability against these spoofing attacks.
Specifically, the human-based attack yields an average of 6% FAR
across all speaker volumes. Even at the attacker’s maximum vol-
ume (80 dBSPL), the FAR only rises to approximately 13%. As a
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Figure 16: Success rate of EarVoice in seven scenarios.

comparison, a machine-based reply attack never survives to awake
EarVoice. This disparity in outcomes may be attributed to the in-
herent differences between human and machine vocal systems.
Specifically, loudspeakers typically exhibit lower efficiency in re-
producing lower-frequency sounds, which makes EarVoice more
effective against such a voice attack.
•Wakup word recognition. We next evaluate the effectiveness of
wakeup word recognition using our copy, paste, and adapt design.
Figure 15 (c) shows the recognition success rate for each individual.
The error bars in the figure indicate performance variations across
three different wakeup words. Overall, EarVoice achieves a success
rate of 89% on average. Dig deeper, subject 14 achieves the lowest
SR at 61% due to her lowest voice volume. Such reduced volume
adversely affects pitch detection accuracy, subsequently impacting
the precision of the alignment processes. Notably, subjects 19–23
show large variations among the three wakeup words. The result
might be attributed to the lower fluency in pronouncing the words
compared with the others.

Impact of age and gender. We focus on one wakeup word (i.e.,
Alexa) and categorize the 23 participants into three groups based
on their age and genders: M-1 (male, <31 years old), F-1 (female,
<31 years old), and F-2 (female, 32–55 years old), respectively. As
depicted in Figure 15(e), we observe that both M-1 and F-1 groups
exhibit similar recognition accuracies, with theM-1 group achieving
a slightly higher accuracy (95%) compared to the F-1 group (91%).
This marginal difference may be attributed to the typically stronger
vocal vibrations observed in males. Furthermore, the F-2 group,
particularly participants 19 and 23, demonstrates significantly lower
recognition accuracy at 62%. This reduction in performance may
be attributed to factors such as less familiar English pronunciations
and lower vocal volumes observed in the participants.

6.2 Field Study
We next assess EarVoice’s end-to-end performance across various
real-world scenarios. As shown in Figure 17, the evaluation encom-
passes four stationary and three mobility scenarios to represent
typical indoor and outdoor settings. In each scenario, we collected
100 utterances for each wakeup word. We then examine the overall
success rate of wakeup word recognition. Airpods are adopted for
comparison. Figure 16 shows the results.
• Stationary scenarios (a)-(d). EarVoice achieves a success rate of
95%, 92%, 89%, and 82% for these four static scenarios, respectively.
The overall accuracy is at around 90%, which is slightly worse than
that of Airpods (92%). A relatively bigger gap between EarVoice
and Airpods is observed in scenario (d). This suggests that severe
noise artifacts, as encountered in (d), can still be perceived by ear-
phone speakers and impact the accuracy of template matching,
consequently affecting the recognition of wakeup words.

•Mobile scenarios (e)-(g). We further extend our investigation
to include three types of mobility. The results of these activities
are shown in Figure 16 (e)-(g). Notably, during (e) driving and
(f) lifting, EarVoice achieves an average success rate of 85% and
84%, respectively. The success rate is slightly lower than in station-
ary environments with comparable noise levels. This decline in
performance is primarily attributed to the head and upper body
movements during driving and lifting, which adversely affect the
signal input quality. In contrast, AirPods maintain a higher average
success rate of 93%. The success rate further drops to 71% while
walking at a busy intersection, influenced by noise from moving ve-
hicles nearby and motion artifacts from the individual. The success
rate of AirPods falls to 72% in these conditions.
Results discussion. In contrast to Airpods which leverages ad-
vanced sensors and beamforming technologies to improve the voice
quality, EarVoice relies solely on the earphone’s speaker transducer
for voice activation and a lightweight signal processing algorithm
for wakeup word enhancement. The manufacturing cost of Ear-
Voice is approximately 8 dollars, tens of times lower than Airpods,
while striving to approach a comparable performance.

6.3 Mirco-Benchmarks
We further conduct benchmark studies to understand the effect of
various factors on EarVoice’s performance.
• Impact of music playback. EarVoice’s hardware is built upon
HeadFi [20] which adopts a differential circuit (i.e., Wheatstone
bridge) to cancel the music interference on the user voice recording.
To assess the impact of music on system performance, we invite a
volunteer to conduct the speech activation experiment while listen-
ing to music at volumes ranging from 5% to 60% of the maximum, in
accordance with the audiology’s 60-60 rule 6 for safe listening [59].
The participant is instructed to speak three types of wakeup words
100 times each at varying music volumes.

Figure 18 shows the result. We observe that EarVoice achieves an
average success rate of 98% and 89% at speaker volumes increasing
modestly from 5% to 20% of the maximum, respectively. These re-
sults affirm EarVoice’s capability to activate voice assistants during
music playback. However, a discernible decline in success rate was
observed at higher volumes: dropping to 74% at 40% volume and
further to 54% at 60% volume. This performance reduction could be
attributed to two factors: one is the discrepancy in impedance be-
tween the left and right earphone transducers, leading to electronic
music signal leakage and interference with speech commands; the
other is the music echos inside the ear canal can be captured by the
speaker transducer during vocal signal recording, which negatively
affects the system performance.
• Impact of different earphones. We invite one participant to
conduct the speech activation experiment by wearing six pairs of
earphones (out of 13) in the lab and speaking three types of wakeup
words, with each wakeup word repeating 100 times. Airpods are
adopted for comparison. The result is shown in Figure 19. Overall,
we observe that EarVoice achieves an average success rate of 87%
over all types of earphones. Notably, over-ear and on-ear earphones
achieve the highest success rate with an average of 92% and 91% SR,
respectively. These results are on par with Airpods (with an average

6 Listen at 60 percent of the maximum volume for no more than 60 minutes a day.
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Figure 17: Four stationary and three mobility scenarios for the in-wild study: (a) home; (b) cafe; (c) park; (d) train; (e) driving
car; (f) lifting in the gym; (g) walking on a busy intersection.

Figure 18: Impact of music playback. Figure 19: Impact of earphones. Figure 20: Impact of voice loudness.

Table 3: System latency breakdown. Joint speech and primary
speaker detection (§4.1.1). Pitch detection-based enhancement
(§4.1.2). Copy-paste-adapt operation (§4.2).

Design comp. §4.1.1 §4.1.2 §4.2
Latency 3ms 159ms 25ms

success rate of 92%), demonstrating EarVoice’s effectiveness across
over-ear and on-ear earphones.

However, EarVoice’s performance is notably lower with in-ear
earphones, with a success rate of 62% on average. One reason for
the better performance of over-ear and on-ear earphones can be
attributed to their larger speaker transducers and inherently larger
surface contact with the skull, allowing for more efficient transfer
of vocal cord vibration energy. In contrast, the smaller transducers
of in-ear earphones exhibit reduced sensitivity to voice commands
(Figure 7). A potential solution is to adjust the speaker volume or
incorporate a power amplifier into our dongle to enhance the signal
strength of the speech recording.
• Impact of different voice loudness. We next evaluate the im-
pact of voice loudness on EarVoice’s success rate. Similarly, we
invited one participant to utter the three types of wakeup words
with four different loudness levels, spanning from 45 to 75 dBSPL.
The range is selected based on CDC’s regulation [13], Specifically, it
designates approximately 40 dBSPL for a whisper, 60-70 dBSPL for
a normal voice level, and 75-85 dBSPL for a loud voice conversation.
As shown in Figure 20, we find that as the voice loudness increases,
the success rate of EarVoice grows by 2.5× from 39% to 99%. A simi-
lar trend can be found on Airpods as well, which shows the success
rate grows from 40% to 100%. Notably, the success rate of EarVoice
is relatively stable (i.e., 93% – 99%) when the voice loudness level
surpasses 55 dBSPL. This result demonstrates EarVoice’s resilience
in handling normal voice conversations.
• System overhead and latency. We also evaluate system over-
head and processing latency. Table 3 details the processing delay
of the front-end design (§4.1.1 & §4.1.2), and copy, paste, and adapt
design (§4.2), respectively. The measurement is conducted on a
2-second audio sample extracted from the audio stream. We ob-
serve that joint speech and primary speaker detection (§4.1.1) takes
around 3ms for processing the 2s audio sample. The pitch detection-
based enhancement §4.1.2 takes 159ms. The copy, paste, and adapt

Table 4: Power consumption breakdown.

Hard. comp. Sensing Codec MCU
Power 0.2mW 60mW 152mW

design (§4.2) takes around 25ms to process a 2-second audio sample.
The overall signal processing delay is around 200ms, demonstrating
the capability of real-time operations. We anticipate the delay will
drop further through multi-thread processing.

Table 4 summarizes the power consumption of each component.
Given a supply voltage of 5V, the sensing module, audio codec, and
MCU consume 0.2mW, 60mW, and 152mW, respectively. The total
power consumption of EarVoice is approximately 212 mW in the
active mode. An 820 mAh lithium battery can be used to provide
up to 19.3 hours of continuous running of EarVoice. The battery
life could be further optimized with duty-cycles.

7 RELATEDWORK
Voice Assistant Activation Technologies. Existing general pur-
pose voice activity detection (VAD) modules, e.g., Google’s webrtc-
vad [52], GPVAD [18], and Kaldi-VAD [50], have been well-studied
and integrated into many mobile applications. Nevertheless, apply-
ing these designs to earphones face challenges as voice communi-
cation on earphones can be plagued by environmental noise and
more severely, the speech commands from nearby individuals.

To solve the issue, personalized VAD [16, 17, 60, 61, 72, 77] with
identifying the target user’s voice fingerprint has been proposed.
But these personalized solutions are generally power intensive and
struggle to counteract spoofing attacks. Hence they are not widely
adopted by consumer devices.

Besides, various research approaches [31, 54, 75] have also been
developed for simplifying voice activation by involving hand ges-
tures. For example, Raise to Speak [80] enables Apple Watch being
able to activate the voice assistant by detecting the raising hand ges-
ture. ProxiMic [54] explores the close-to-mic voice characteristics
(e.g., pop noise) and enables voice activation by placing the micro-
phone close to the user’s mouth. PrivateTalk [75] activating voice
input with user-defined hands-on-month gestures for earphone
devices. Although these approaches guarantee low false positives,
they inevitably require the involvement of hand gestures and thus
bring extra burden for the users.
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Different from the aforementioned works, EarVoice takes ad-
vantage of an opportunity hidden in the earphone transducer and
develops a hands-free voice activation system while guaranteeing
low false positives towards environmental noise and false trigger-
ing voice commands from nearby people. The proposed signal-
processing algorithm could run efficiently on mobile and embedded
devices without complex computation requirements.
Bone Conduction Channels. Recently, bone conduction sen-
sors [5, 21, 26, 76], such as IMU [26], in-ear microphone [40], voice
pickup sensor (VPU) [60], non-audible murmur (NAM) and throat
microphone [45], have been explored for speech enhancement,
voice activation, and speaker verification [21, 39, 62]. For example,
WhisperMask [28] designs a new interface that catches the user’s
whispering speech with an embedded condenser microphone wo-
ven hidden in a non-woven mask to reduce the noise interference
from the environment. In-Ear-Voice [60] developed a low-power
personalized VAD system for hearables by exploring the bone con-
duction sensor. VibVoice [26] utilized the bone conduction response
from IMU sensors to enhance speech quality in a noisy environ-
ment. These pioneer works demonstrate promising results, but they
cannot be deployed on existing earphones due to the lack of such
onboard sensors. In contrast, our study explores the bone conduc-
tion effect on the speaker transducer which pervasively exists on
every earphone.

HeadFi [20] explores the reciprocal principle of earphones and
demonstrates the capability of using the earphone transducer for
user identification, physiological sensing, touch gesture recogni-
tion, etc. Our hardware dongle builds upon HeadFi but extends it
to a software-hardware system that explores two different voice
channels to enable hands-free voice activation. Moreover, the high-
frequency deafness associated with speaker transducers introduces
unique challenges to activating voice assistants and motivates us
with the copy-paste-adapt keyword enhancement design to thor-
oughly improve the activation accuracy and enhance speech quality.
Whisper or Silent Speech Interface. Researchers also explore
novel silent speech interface technologies [36, 66] for enriching
speech recognition interfaces. For example, LipLearner [65] pro-
poses a customizable silent speech interface on mobile phones by
building up the relationship between voice commands and cor-
responding non-verbal lip movements through a neural network
model. It allows users to activate the speech service with lip mo-
tions. HPSpeech [78] creates a silent speech interface on earphones
by emitting inaudible acoustic signals to detect the movement of
temporomandibular joint (TMJ) for silent voice command recogni-
tion. MuteIt [64] tracks the user’s jawmotion with a dual-IMU setup
to infer word articulation around the ear. EarCommand [31] emits
an ultrasonic signal in the ear canal and builds the relationship
between the deformation of the ear canal and the movements of
the articulator to infer the corresponding silent speech commands
while speaking. Unlike the aforementioned works that aim to es-
tablish new paradigms for speech interaction, EarVoice adheres to
the current speech recognition (SR) service, focusing on enhancing
their reliability.

8 DISCUSSION
EarVoice leaves room for future improvement, as discussed below:

Scale to smart ANC earbuds. EarVoice aims to facilitate hands-
free voice assistant activation across all earphone types. Leveraging
the universal presence of speaker transducers in earphones, our
solution is broadly applicable to different earphone models. Al-
though our current prototypes are only tested on traditional wired
earphones, we believe the proposed signal processing designs can
be applied to ANC earbuds as well as their onboard accelerometer
sensors also show bone-conduction properties [26]. We leave such
exploration for future work.
Wakeup words selection. Our current evaluation focuses on the
three most widely used wakeup words (i.e., Alexa, Hey Siri, and OK
Google), which can minimize the user’s learning curve and avoid
additional user effort when interacting with our system. However,
we acknowledge that limiting our evaluation to these three key-
words might constrain the breadth of our findings. We recognize
this as a limitation in our current study. In the future, we will in-
vestigate the the system performance based on a wider range of
wake-up words.
Improving the system performance. Our benchmark evalua-
tions reveal that EarVoice exhibits comparatively lower perfor-
mance when used with in-ear earphones, as opposed to out-ear and
on-ear earphones. This performance discrepancy stems from the
smaller transducer size in in-ear earphones, which limits the area
of contact with the skull. Consequently, the energy perception of
the vocal cord vibration is relatively lower. One potential solution
to tackle the challenge is to integrate a power amplifier within the
hardware dongle and bolster the strength of the signal captured
during speech recording. The tradeoff, however, is the higher power
consumption, which is worth further exploration.

Similarly, the presence of motion artifacts, ambient noise, and
music introduces extra interference with the perceived speech com-
mands. Such disturbances lead to a reduced Signal-to-Interference-
plus-Noise Ratio (SINR), adversely affecting the perceived clarity of
speech commands and impacting the accuracy of template match-
ing, consequently, degrading the system performance. To address
the challenge, one promising solution is deep neural network-based
acoustic signal enhancement [49] or denoising [15]. We leave such
exploration for future work.

9 CONCLUSION
We have presented the design, implementation, and evaluation of
EarVoice, a software-hardware solution that enables mobile users
to activate their voice assistant on earphones without hand gesture
intervention. EarVoice contributes a plethora of low-power signal
processing algorithms that take advantage of the two speech signal
propagation channels to detect the human speech, differentiate the
primary speaker, and further enhance the quality of the wakeup
word for accurate wakeup word recognition. The experiment in
different real-world scenarios demonstrated the efficacy and effec-
tiveness of EarVoice.
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